• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of Serum Albumin Aggregation in Lubrication and Wear Protection of Shearing Surfaces

Samak, Mihir 11 July 2019 (has links)
Healthy articular joints exhibit remarkable lubrication due in large part to the complex rheological and tribological behavior of the synovial fluid (SF) that lubricates the joints. Current approaches that seek to elucidate such remarkable lubrication usually focus on the roles of high molecular weight SF components such as lubricin and hyaluronic acid but frequently overlook the role of serum albumin (SA), although it represents 90% of the protein content of SF. In this thesis, we used the Surface Forces Apparatus to investigate in detail the structural and tribological response of SA thin films when sheared between model surfaces and subjected to a large range of shearing parameters. Our data indicate that, under shear, SA films reproduce closely the shear response previously reported for SF, i.e., film thickening and formation of numerous long-lived aggregates accompanied by low friction and efficient surface protection against damage. More specifically, our detailed investigation of shear parameters reveals that (i) strong anchoring of SA to surfaces promotes the formation of large rod-like shaped aggregates that enable rolling friction and keep surfaces far apart, preventing damage, (ii) aggregation mechanism is irreversible, which makes aggregates long-lived (though mobile) in the contact, and (iii) aggregate formation only occur when SA was sheared above a ‘critical’ amplitude Ac and a critical shear velocity Vc. Collectively, our results provide experimental evidence of the role of globular proteins, such as SA, in lubrication and establish a correlation between shearing parameters, formation and stability of aggregates, low friction and wear protection. Although our findings are based on experiments involving rigid, nonporous surfaces hence can hardly be generalized to compliant and porous cartilage surfaces, they are applicable to other rigid tribosystems such as artificial joints and will certainly advance our understanding of joint implants’ lubrication in SF mediated by protein aggregation, with implications for future design of artificial joints and therapeutic interventions.
2

Polyzwitterionic biomaterials for improving tribological properties of articular cartilage: injectable treatments for early-stage osteoarthritis

Cooper, Benjamin Goldman 04 April 2017 (has links)
Mechanical properties of articular cartilage, including stiffness, biolubrication, and wear-resistance, undergo deterioration during progression of diseases such as osteoarthritis. When the tissue becomes softened and wear-prone, resulting from biochemical alterations within the cartilage matrix, osteoarthritis patients experience painful joint degeneration and erosion of the bone-protective cartilage. Moreover, the synovial fluid bathing the cartilage also experiences a reduction in lubricating capacity as osteoarthritis advances, further hastening wear. An existing treatment paradigm known as viscosupplementation, designed to restore a viscous and lubricating nature to the synovial fluid, involves intraarticular injection of hyaluronic acid into affected joints. While this technique relieves pain for some individuals, the majority of patients experience neither pain relief nor protection of the cartilage from further damage. To address the unmet need of patients requiring chondroprotective thera-pies, this dissertation describes two potential intraarticular strategies based on the application of polymer chemistry principles to bodily tissues and interfaces. One strategy involves the synthesis of a non-hyaluronic-acid synovial fluid sup-plement, based on a phosphorylcholine-containing polyacrylate network, de-signed to functionally mimic the lubricity of the glycoprotein lubricin, phospho-lipid macromolecular assemblies, and high molecular weight hyaluronic acid. The second strategy involves the in situ photopolymerization of a related polyacrylate within cartilage bulk tissue to strengthen, prevent wear, and in-crease the proportion of compressive load supported by the tissue’s interstitial fluid rather than solid matrix. In this strategy, the branched polymer network functionally mimics the glycosaminoglycans that are found in healthy cartilage but depleted in osteoarthritic cartilage. For both potential therapies, chemical and physical properties of the respective fluid and tissue are analyzed, and ex vivo cartilage mechanical testing involving axial and shear deformation reveal the biotribological and compressive reinforcement conferred by the zwitterionic polymer. The synovial fluid supplement significantly decreases cartilage friction through a variety of lubrication mechanisms depending upon tissue fluid flow state and articulation conditions, and the cartilage-reinforcing supplement pro-tects cartilage during accelerated wear testing while also improving synovial flu-id’s ability to lubricate polymer-impregnated cartilage. The fundamental tissue—biomaterial tribological interactions investigated in this dissertation will inform the rational design of therapeutic, friction-reducing polymers for diverse applications. / 2019-04-04T00:00:00Z
3

Synergies in Biolubrication

Raj, Akanksha January 2017 (has links)
The objective of this thesis was to advance understanding in the field of biolubrication, finding inspiration from the human synovial joints. This was addressed by investigating the association of key biolubricants and the resulting lubrication performance. Techniques employed during the course of this work were Atomic force microscopy (AFM), Quartz crystal microbalance with dissipation monitoring (QCM-D), X-ray reflectivity (XRR). Key synovial fluid and cartilage components like dipalmitoylphosphatidylcholine (DPPC), hyaluronan (HA), lubricin, and cartilage oligomeric matrix protein (COMP) have been used in the investigations. Focus was towards two lubrication couples; DPPC-hyaluronan and COMP-lubricin. DPPC-hyaluronan mixtures were probed on hydrophilic silica surfaces and COMP-lubricin association structures were explored on weakly hydrophobic poly (methyl methacrylate) (PMMA) surfaces. Investigations of the COMP-lubricin pair revealed that individually these components are unable to reach desired lubrication. However in combination, COMP facilitates firm attachment of lubricin to the PMMA surface in a favourable confirmation that imparts low friction coefficient. DPPC and hyaluronan combined impart lubrication advantage over lone DPPC bilayers. Hyaluronan provides a reservoir of DPPC on the surface and consequently self-healing ability. Other factors like temperature, presence of calcium ions, molecular weight of hyaluronan, and pressure were also explored. DPPC bilayers at higher temperature had higher load bearing capacity. Association between DPPC Langmuir layers and hyaluronan was enhanced in the presence of calcium ions, and lower molecular weight hyaluronan had a stronger tendency to bind to DPPC. At high pressures, DPPC-hyaluronan layers were more stable compared to lone DPPC bilayers. / <p>QC 20170210</p>
4

Synovial fluid components as synergistic lubricants in articular joint models / Smörjningssynergier mellan komponenter i synovialvätska

Li, Sixuan January 2019 (has links)
The excellent lubrication present within mammalian synovial joints attracted scientific interest, and some close-to-realistic models were applied to study the mechanism in vitro. In this project, the synergistic lubrication of synovial fluid was investigated by using 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), hyaluronic acid (HA), and phosphate-buffered saline (PBS buffer) to mimic the synovial fluid. Lubrication by the model synovial fluid was studied using borosilicate glass specimens in Mini-Traction Machine (MTM). The experiments proved that the DPPC vesicle solution and mixed DPPC/HA solution had excellent lubrication ability, stemming both from adsorption of a lubricious layer at the surface of glass specimens and from presence of material reservoir available for repair of wear defects in the lubricious layer. Comparing the macroscale results obtained in this project by MTM with the results in previous studies on microscale by using AFM, we concluded that the microscale study of synergistic lubrication could predict macroscale results, even though some differences were detected due to limited possibilities for exact replication of experimental conditions at the two scales.
5

Biolubricants and Biolubrication

Wang, Min January 2014 (has links)
The main objective of this thesis work was to gain understanding of the principles of biolubrication, focusing on synergistic effects between biolubricants. To this end surface force and friction measurements were carried out by means of Atomic Force Microscopy, using hydrophilic and hydrophobic model surfaces in salt solutions of high ionic strength (≈ 150 mM) in presence of different biolubricants. There was also a need to gain information on the adsorbed layers formed by the biolubricants. This was achieved by using a range of methods such as Atomic Force Microscopy PeakForce imaging, Quartz Crystal Microbalance with Dissipation, Dynamic Light Scattering and X-Ray Reflectometry. By combining data from these techniques, detailed information about the adsorbed layers could be obtained.The biolubricants that were chosen for investigation were a phospholipid, hyaluronan, lubricin, and cartilage oligomeric matrix protein (COMP) that all exist in the synovial joint area. First the lubrication ability of these components alone was investigated, and then focus was turned to two pairs that are known or assumed to associate in the synovial area. Of the biolubricants that were investigated, it was only the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) that was found to be an efficient lubricant on its own. Deposited DPPC bilayers on silica surfaces were found to be able to provide very low friction coefficients (≈ 0.01) up to high pressures, ≈ 50 MPa. A higher load bearing capacity was found for DPPC in the liquid crystalline state compared to in the gel state.The first synergy pair that was explored was DPPC and hyaluronan, that is known to associate on the cartilage surface, and we also noticed association between hyaluronan and DPPC vesicles as well as with adsorbed DPPC bilayers. By combining these two components a lubrication performance similar to that of DPPC alone could be achieved, even though the friction coefficient in presence of hyaluronan was found to be slightly higher. The synergy here is thus not in form of an increased performance, but rather that the presence of hyaluronan allows a large amount of the phospholipid lubricant to accumulate where it is needed, i.e. on the sliding surfaces.The other synergy pair was lubricin and COMP that recently has been shown to be co-localized on the cartilage surface, and thus suggested to associate with each other. Lubricin, as a single component, provided poor lubrication of PMMA surfaces, which we utilized as model hydrophobic surfaces. However, if COMP first was allowed to coat the surface, and then lubricin was added a low friction coefficient (≈ 0.03) was found. In this case the synergy arises from COMP facilitating strong anchoring of lubricin to the surface in conformations that provide good lubrication performance. / Huvudsyftet med det här avhandlingsarbetet var att öka förståelsen för den låga friktion som finns i vissa biologiska system, med fokus på synergistiska effekter mellan de smörjande molekylerna. För detta ändamål studerades ytkrafter och friktion med hjälp av atomkraftsmikroskopi. Mätningarna utfördes med hydrofila och hydrofoba modellytor i lösningar med hög salthalt (≈ 150 mM) i närvaro av smörjande biomolekyler. Det var också nödvändigt att få information om de adsorberade skikten av biomolekyler. Det åstadkoms med hjälp av en rad tekniker så som AFM PeakForce avbildning, kvartskristallmikrovåg, dynamisk ljusspridning och röntgen reflektometri. Genom att kombinera data från dessa tekniker erhölls detaljerad information om de smörjande skikten.De smörjande biomolekyler som valdes ut för studierna var en fosfolipid, hyaluronan, lubricin, and cartilage oligomeric matrix protein (COMP) vilka alla finns i synovialledsområdet. Först undersöktes den smörjande förmågan hos dessa komponenter var för sig, och sedan fokuserade vi på två par av biomolekyler som man vet eller antar bildar associationsstrukturer i synovialleder. Av de enskilda biomolekyler som undersöktes var det endast fosfolipiden 1,2-dipalmitoyl-sn-glycero-3-fosfokoline (DPPC) som visade sig vara en effektivt smörjande molekyl. Deponerade biskikt av DPPC på silikaytor gav upphov till mycket låga friktionskoefficienter (≈ 0.01) upp till höga pålagda tryck, ≈ 50 MPa. DPPC bilager i flytande kristallin fas visade sig ha högre lastbärande förmåga än DPPC bilager i geltillstånd.Det första synergistiska par som undersöktes var DPPC och hyaluronan vilka man vet associerar på broskytan, och vi visade att hyaluronan associerar med såväl DPPC vesiklar som med DPPC bilager. Genom att kombinera dessa två komponenter uppmättes en smörjande förmåga som var jämförbar med den som DPPC ensam uppvisar. Även om friktionskoefficienten var något högre i närvaro av hyaluronan. Synergieffekten här består inte av en bättre smörjande förmåga, utan istället gör närvaron av hyaluronan att de smörjande fosfolipiderna kan ansamlas i stora mängder där de behövs, dvs. på de glidande ytorna.Det andra synergiparet var lubricin och COMP vilka nyligen har visats vara lokaliserade på samma platser på broskytan, vilket tyder på att de associerar med varandra. På egen hand var lubricins smörjande förmåga av PMMA, våra hydrofoba modellytor, dålig. Emellertid, om COMP först adsorberades på PMMA och sedan lubricin tillsattes uppmättes en låg friktionskoefficient (≈ 0.03). I det här fallet består synergin av att COMP möjliggör en stark inbindning till ytan av lubricin i konformationer som ger god smörjande förmåga. / <p>QC 20141202</p> / Stiftelsen för strategisk forskning - SSF

Page generated in 0.1021 seconds