Spelling suggestions: "subject:"biomassburning"" "subject:"biomassförbrukning""
1 |
Predicting behaviors and effects of biomass burningDavis, Aika Yano 27 May 2016 (has links)
Wildfires and prescribed burns are important sources of air pollutants and can significantly affect air quality at urban locations across large regions. Air quality forecasts generated with Eulerian numerical models can provide valuable information to environmental regulators and land managers about the potential impacts of fires. However, the ability of these models to simulate concentrated fire-related smoke plumes is limited since they lack fire specific physics and chemistry. A sub-grid plume model was coupled with a chemical transport model to address this issue. The modeling framework centered on a fire plume transport model, Daysmoke, and the Community Multiscale Air Quality modeling system (CMAQ) is used to simulate several fire episodes. The studied episodes were used to understand uncertainty in fire emissions and its effect on plume transport modeling and to verify the coupled system’s performance. The system was also used to simulate prescribed burning scenarios with five varying parameters: age of fuel bed, season, acreage, ignition type, and time of the day. Key findings relating to burn efficiency and emission reduction on future prescribed burnings will be discussed.
|
2 |
Distribution of black carbon and its impact on Eutrophication in Lake VictoriaOdhiambo, Moses, Routh, Joyanto January 2016 (has links)
Lake Victoria (LV), is the largest tropical fresh water lake. It is however facing a myriad of challenges like eutrophication, introducing species, mass extinction and climate change. Eutrophication has mostly been seen as a result of non-point pollution from upstream agricultural areas. However, studies have found that atmospheric deposition could perhaps be the greatest cause of nutrient loading in the lake. Our study looked at black carbon as one of the factors favoring eutrophication in LV. Black carbon is a product of incomplete combustion of biomass or fossil fuel. Biomass burning is prevalent in many areas of Africa and our results have shown a great spatial and temporal variability in its concentration in sediments. The sedimentation rates calculated after analyzing 210Pb activity were 0.87, 0.53 and 0.35 g cm-2 yr-1 while the average black carbon concentrations were 4.6, 2.1 and 6.9 mg g-1 for Siaya, Kisumu and Busia, respectively. These results provided valuable information when compared to past historical events in the Lake region especially eutrophication. The study also found that soot BC has been increasing in the past 100 years suggesting the input from fossil fuels. This study elucidates the complexity of drivers of eutrophication in Lake Victoria. Nitrogen and Phosphorous from the upstream agricultural sites has long been seen as the main cause of eutrophication. Through this study we find that soot deposition in the lake coincides with the period of increased primary productivity. The Total Organic Carbon and Total Nitrogen were also analyzed and have shown increased remarkable increase with time. All these geochemical variables are a testament to the increased role of human activities on the lake’s productivity. While other studies on soot in marine environments have associated bacterial growth to nutrients attached to soot black carbon. We correlate the concentration of soot in Lake Victoria basin to blooming of cyanobacteria.
|
3 |
Physical and chemical properties and sources of aerosol across southern West Africa during the monsoonHaslett, Sophie January 2018 (has links)
Aerosol particles are ubiquitous in the atmosphere and their properties impact on the atmospheric energy balance. They scatter and absorb incoming sunlight and can perturb cloud microphysical properties, which affects cloud lifetimes and albedo. Africa is one of the worldâs largest sources of aerosol due to both its large deserts and prolific biomass burning during the dry seasons. Nevertheless, the continent's atmosphere has, to date, been among the least studied in the world. The southern coast of West Africa is developing rapidly, with both population and anthropogenic emissions being predicted to increase substantially in coming years. It is therefore becoming ever more important to understand the characteristics of aerosols in this region, which will have consequences for issues as diverse as local health and global climate change. This project addresses this problem in two ways: first, laboratory experiments were carried out to characterise biomass burning aerosol at source. Biomass burning is one of the most poorly understood aerosol sources, but one of the most prevalent in tropical regions. Second, aircraft observations were made in southern West Africa during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field campaign in summer 2016, to observe the broad-scale distribution of chemical and physical aerosol properties. Results were collected in-situ with Aerodyne Aerosol Mass Spectrometers (AMS) and other online aerosol instrumentation; they were considered alongside observations from DACCIWA ground sites and model results. Distinguishable chemical signatures were reliably observed during three phases of combustion events in the laboratory study. This gave insight into the mechanisms linking combustion phases and emissions. Airborne observations in southern West Africa revealed a remarkably consistent background of aged, accumulation mode aerosol present across the region in the boundary layer, including in the region upwind of the cities on the south coast. It was demonstrated that this likely originated from large-scale biomass burning in central and southern Africa, which had become entrained into the boundary layer above the Atlantic and transported north. A second result from the DACCIWA campaign showed that the hygroscopic growth of these particles, due to the high humidity in the region during June and July, more than doubled the mean dry aerosol optical depth. Taken together, these findings shed light on the substantial impacts that biomass burning aerosol, in particular, has on the atmosphere above southern West Africa.
|
4 |
Long term hydrological change, the El Niño/Southern Oscillation and biomass burning in the tropicsHenke, Lilo Maria Keti January 2016 (has links)
Rapidly rising levels of atmospheric greenhouse gases including carbon dioxide and methane since the industrial revolution have drawn scientific attention to the importance of the global carbon cycle to the climate (Cubasch et al., 2013). Tropical peatlands, the majority of which are located in the Indonesian region, are a major source of uncertainty in the carbon cycle as the relationships between carbon accumulation and hydrological changes remain poorly understood (Hergoualc’h & Verchot, 2011, Page et al., 2011). An important driver of carbon emissions in tropical peatlands is fire, which in the Indonesian region is strongly influenced on interannual timescales by the El Niño/Southern Oscillation (ENSO). However, it is not clear how ENSO and fire have varied at decadal to centennial scales over the past two millennia. This thesis explores long term tropical hydrological variability and ENSO-like climate change from palaeorecords and their interactions with fire. Using a wide range of instrumental, proxy and model datasets and a novel reconstruction method, two separate reconstructions of long-term ENSO-like climate change are produced based on precipitation and temperature data. These show no evidence of a difference between the ENSO-like behaviour of precipitation and temperature. There is limited evidence for a difference in long-term ENSO-like state between the Medieval Climate Anomaly and the Little Ice Age. Reconstructions of hydrological variability and biomass burning in the Indonesian region suggest that precipitation and fire have been positively correlated over the past 2,000 years, which is contrary to the modern-day relationship on ENSO timescales. This throws up questions of long-term versus short-term interactions and feedbacks between fire, climate and vegetation. It is likely that anthropogenic activity in the Indonesian region has significantly altered the stability of the fire regime. Further research combining proxy data, climate and fire models, and using more robust statistical analysis is necessary to untangle the natural and anthropogenic driving factors at different time resolutions.
|
5 |
Oligomerization of Levoglucosan in Proxies of Biomass Burning AerosolsHolmes, Bryan J. 18 June 2008 (has links)
Biomass burning aerosols play an important role in the chemistry and physics of the atmosphere and therefore, affect global climate. Biomass burning aerosols are generally aqueous and have a strong saccharidic component due to the combustion and pyrolysis of cellulose, a major component of foliar fuel. This class of aerosol is known to affect both the absorption and scatter of solar radiation. Also, biomass burning aerosols contribute to cloud formation through their action as cloud-condensation nuclei. Many questions exist about the chemical speciation and chemical aging of biomass burning aerosols and how this affects their atmospheric properties and ultimately, global climate. Also, knowledge of the chemical components of these aerosols is important in the search for chemical tracers that can give information about the point or regional source, fuel type, and age of a biomass burning aerosol parcel. Levoglucosan was chosen for these studies as a model compound for biomass burning aerosols because of its high measured concentrations in aerosol samples. Levoglucosan often dominates the aerosol composition by mass. In this dissertation, laboratory proxy systems were developed to study the solution-phase chemistry of levoglucosan with common atmospheric reactants found in biomass burning aerosols (i.e. H+, •OH). To mimic these natural conditions, acid chemistry was studied using sulfuric acid in water (pH=4.5). The hydroxyl radical (•OH) was produced by the Fenton reaction which consists of iron, hydrogen peroxide and acid (H2SO4) in aqueous solvent. For studies in aqueous sulfuric acid, oligomers of levoglucosan were measured by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). A rational mechanism is proposed based on both the acid-catalyzed cationic ring-opening of levoglucosan and nucleophilic attack of ROH from levoglucosan on the hemi-acetal carbon to produce pyranose oligomers through the formation of glycosidic bonds. Oligomer formation is further supported by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Reactions of levoglucosan with •OH produced from Fenton chemistry were studied in solution. Two modes of oligomerization (2000 u) were observed for reaction times between 1 and 7 days using MALDI-TOF-MS and laser desorption ionization (LDI) TOF-MS. Single-mass unit continuum mass distributions with dominant -2 u patterns were measured and superimposed by a +176/+162 u oligomer series. This latter oligomer pattern was attributed to a Criegee rearrangement (+14 u) of levoglucosan, initiated by •OH, forming a lactone (176 u). The acid-catalyzed reaction of any ROH from levoglucosan (+162 u) forms an ester through transesterification of the lactone functionality, whereupon propagation forms polyesters. Proposed products and chemical mechanisms are suggested as sources and precursors of humic-like substances (HULIS), which are known to possess a large saccharic component and are possibly formed from biomass burning aerosols. These products could also serve as secondary tracers, giving further information on the source and age of the aerosol.
|
6 |
Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosolsLee, Yong Seob 16 August 2006 (has links)
This dissertation describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this dissertation, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties.
I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An
aircraft-based TDMA was used for the first time during this campaign to examine the size-resolved hygroscopic properties of the aerosol. The Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth were measured in College Station, Texas to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted cloud condensation nuclei concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients were also calculated.
|
7 |
Examining the impact of wildfire smoke aerosol on clouds, precipitation, and radiative fluxes in Northern America and Russia using a fully coupled meso-scale model WRF-Chem-SMOKE and satellite dataZheng, Lu 2014 August 1900 (has links)
We developed a fully-coupled meso-scale model WRF-Chem-SMOKE by incorporating a selection of smoke emission models and improving the representations of aerosol-cloud interactions in the microphysics scheme. We find that the difference in smoke emissions between different datasets, even in one fire cluster, could lead to significant discrepancies in modeled AODs. The integrated smoke emission dataset improves the prediction of modeled AODs. We find that the modeled cloud properties and precipitation are extremely sensitive to the smoke loadings. Higher smoke loadings suppress precipitation initially, because of smoke-induced reduction of the collision-coalescence and riming processes, but ultimately cause an invigoration of precipitation.
|
8 |
Aircraft observations of biomass burning aerosols over tropical South AmericaDarbyshire, Eoghan January 2017 (has links)
Biomass burning aerosol can perturb the atmospheric energy budget and hence regional and global climates via interactions with solar radiation and cloud microphysics. Furthermore, there are significant deleterious effects on human and ecosystem health. The magnitude and nature of these impacts is driven by the aerosols physiochemical properties and their vertical distribution. However the drivers of these are poorly characterised, especially in the tropics where widespread biomass burning is co-located with complex cloud fields and processes, high levels of solar insolation and rapid land use change. In this work the key drivers determining the geographic, vertical, meteorological and temporal variability of biomass burning haze in tropical South America are identified and quantified. This is based on an analysis of simultaneous and vertically resolved measurements of aerosol burden, aerosol intrinsic properties (composition, size, hygroscopicity and optics), gas phase mixing ratios and atmospheric thermodynamics. These novel in-situ measurements were undertaken during research flights as part of the South America Biomass Burning Analysis (SAMBBA) campaign in September/October 2012. A clear difference is observed between the two distinct fire regimes in tropical South America. Cerrado (deforestation) regimes in the east (west) are found to be characterised by more flaming (smouldering) combustion, leading to a contrast in emissions with relatively more (less) refractory black carbon to organic aerosol and smaller (larger) aerosol sizes. This results in a population which absorbs (scatters) more incoming solar radiation. Furthermore, the aerosol vertical distribution differs between regimes: in the east (west) biomass burning aerosol of a similar loading is distributed from the surface to ~4 km (~2 km). This is driven by contrasting thermodynamics, in particular convective mixing, and plume injection to greater altitudes in the east. This work is the first demonstration of a contrast between these two regions from in-situ measurements. The additional atmospheric heating from biomass burning aerosol, calculated from in-situ measurements for the first time in the tropics, is significant in both fire regimes, but especially so in the eastern Cerrado where it is greater than that from molecular absorption. Heating also increases with altitude in the east, owing to the prevalence of flaming combustion which is observed to inject more absorbing emissions to higher altitudes. Models do not consider this process, nor do they capture (via emissions factors) the regional difference identified. As such, the associated effects on atmospheric stability, cloud formation and large scale dynamics may not be adequately considered in model simulations and thus predictions may not be representative. To contextualise the in-situ measurements, satellite derived climatologies of fire and aerosol properties are presented for the past decade. In the west the aerosol and trace gas burden has significantly declined, in association with deforestation rates, total fire count and fire intensity. In the east, a small increase in aerosol and trace gas burden is coupled to decreasing single scattering albedos and increasing absorption at near-UV wavelengths, fire intensity and relative fire occurrence. The findings presented in this work offer new insight into the nature of tropical biomass burning aerosols: on how and why fire regimes result in contrasting physiochemical properties; on how the population is vertically distributed and why this varies between regimes; and on the significant additional heating biomass burning aerosol transfers to the atmosphere. In tropical South America specifically, the heating rate is greatest in the eastern Cerrado regions, co-located with increases in fire count and intensity and thus likely to have an increasingly significant impact on weather and climate in the region.
|
9 |
Characterizing Regional-Scale Combustion Using Satellite Retrievals of CO, NO2 and CO2Silva, Sam, Arellano, A. 19 July 2017 (has links)
We present joint analyses of satellite-observed combustion products to examine bulk characteristics of combustion in megacities and fire regions. We use retrievals of CO, NO2 and CO2 from NASA/Terra Measurement of Pollution In The Troposphere, NASA/Aura Ozone Monitoring Instrument, and JAXA Greenhouse Gases Observing Satellite to estimate atmospheric enhancements of these co-emitted species based on their spatiotemporal variability (spread, sigma) within 14 regions dominated by combustion emissions. We find that patterns in sigma(XCO)/sigma(XCO2) and sigma(XCO)/sigma(XNO2) are able to distinguish between combustion types across the globe. These patterns show distinct groupings for biomass burning and the developing/developed status of a region that are not well represented in global emissions inventories. We show here that such multi-species analyses can provide constraints on emission inventories, and be useful in monitoring trends and understanding regional-scale combustion.
|
10 |
Evaluated developments in the WRF-Chem Model : comparison with observations and evaluation of impactsArcher-Nicholls, Scott January 2014 (has links)
The Weather Research and Forecasting with Chemistry (WRF-Chem) Model is an “online” regional scale prediction system designed to simulate many detailed meteorological, gas-phase chemical and aerosol processes, with full coupling between the different components. The impacts of aerosol particles are complex and spatially heterogeneous, their impacts varying greatly at the regional scale. Modelling the properties and impacts in a systematic manner requires the coupling between different chemical phases, meteorological and physical parameterisations a model such as WRF-Chem offers. This manuscript documents several developments, and their evaluation, that have been made to the WRF-chem model to improve its representation of detailed gas-phase chemical and aerosol processes. The first study gives an overview of developments made for modeling the North-West European region, including the addition of a new semi-explicit chemical mechanism, N2O5 heterogeneous chemistry and modifications to the sea-spray emissions routine to include fine-mode organic material. The broad impacts of these developments were assessed in the study, while a follow up paper (included in supplementary material) investigated more deeply the impacts of N2O5 heterogeneous chemistry. The second study discusses modifications to WRF-Chem and emission products to improve modelled representation of biomass burning aerosol particles over Brazil. Model results were compared with aircraft measurements and found to represent aerosol particle size distributions and cloud condensation nuclei concentrations reasonably well, but too much biomass burning aerosol were transported up to high altitudes (4-8 km) by the model. In the third study, nested simulations (at higher resolutions than those used in the second study) over Brazil were used to evaluate the impact of aerosol particles on the local radiative balance, by comparing model results from simulations with and with- out aerosol-radiative feedbacks. The instantaneous clear sky aerosol-radiation forcings were found to have a net cooling of -5.0 W m−2 at the top of the atmosphere. Issues with resolving aerosol–cloud interactions, because of the convective parameterisation and differences in model setup across scales, made evaluating semi- and indirect effects impossible.
|
Page generated in 0.0784 seconds