Spelling suggestions: "subject:"biomasseverbrennungsprodukte"" "subject:"biomasseverbrennungsprodukten""
1 |
Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles / Flugzeuggetragene spektrale Strahlungsmessungen zur Bestimmung des solaren Strahlungsantriebs von Sahara-Staub und Partikeln aus BiomasseverbrennungsproduktenBauer, Stefan 06 August 2014 (has links) (PDF)
This dissertation deals with spectral measurements of solar radiation in the visible and near infrared wavelength range. The data were collected during a field campaign on the Cape Verde Islands in January / February 2008 within the DFG research group SAMUM 2 (Saharan Mineral Dust Experiment). During this campaign airborne measurements of upward radiances and irradiances were performed over aerosol layers. Since the Cape Verde Islands are in the advection area of air masses from the Sahara region northeast of the islands and from regions with bush fires from the southeast, the sampled aerosol mainly consists of mineral dust, biomass burning smoke or a mixture of both. These radiation measurements and airborne lidar measurements of aerosol extinction coefficients were used to calculate the dust radiative forcing at the top of atmosphere with an one-dimensional radiative transfer model. This required the spectral surface albedo and aerosol optical properties, determined by model retrievals. The dependence of the calculated dust radiative forcing on the aerosol optical thickness was used to distinguish between aerosol distributions with mineral dust only or mixed with biomass burning smoke. This mainly model-based method was compared with another mainly measurement-based method, which requires the net radiation at the flight altitude and its dependence on the aerosol optical thickness to distinguish between the different aerosol distributions. The mainly model-based method shows no differences between the calculated radiative forcings of aerosols mainly consisting of mineral dust and those mixed with biomass burning smoke due to high uncertainties. In contrast to the mainly model-based method, the mainly measurement-based method shows clear differences between aerosols with and without biomass burning smoke. Thus the mainly measurement-based method is the preferred method, because it omits the retrieval of the aerosol optical properties, which leads to high uncertainties, in contrast to the mainly model-based method.
|
2 |
Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particlesBauer, Stefan 18 July 2014 (has links)
This dissertation deals with spectral measurements of solar radiation in the visible and near infrared wavelength range. The data were collected during a field campaign on the Cape Verde Islands in January / February 2008 within the DFG research group SAMUM 2 (Saharan Mineral Dust Experiment). During this campaign airborne measurements of upward radiances and irradiances were performed over aerosol layers. Since the Cape Verde Islands are in the advection area of air masses from the Sahara region northeast of the islands and from regions with bush fires from the southeast, the sampled aerosol mainly consists of mineral dust, biomass burning smoke or a mixture of both. These radiation measurements and airborne lidar measurements of aerosol extinction coefficients were used to calculate the dust radiative forcing at the top of atmosphere with an one-dimensional radiative transfer model. This required the spectral surface albedo and aerosol optical properties, determined by model retrievals. The dependence of the calculated dust radiative forcing on the aerosol optical thickness was used to distinguish between aerosol distributions with mineral dust only or mixed with biomass burning smoke. This mainly model-based method was compared with another mainly measurement-based method, which requires the net radiation at the flight altitude and its dependence on the aerosol optical thickness to distinguish between the different aerosol distributions. The mainly model-based method shows no differences between the calculated radiative forcings of aerosols mainly consisting of mineral dust and those mixed with biomass burning smoke due to high uncertainties. In contrast to the mainly model-based method, the mainly measurement-based method shows clear differences between aerosols with and without biomass burning smoke. Thus the mainly measurement-based method is the preferred method, because it omits the retrieval of the aerosol optical properties, which leads to high uncertainties, in contrast to the mainly model-based method.
|
Page generated in 0.0822 seconds