• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Hepatitis C Virus knowledgebase with computational prediction of functional hypothesis of therapeutic relevance

Kojo, Kwofie Samuel January 2011 (has links)
Philosophiae Doctor - PhD / To ameliorate Hepatitis C Virus (HCV) therapeutic and diagnostic challenges requires robust intervention strategies, including approaches that leverage the plethora of rich data published in biomedical literature to gain greater understanding of HCV pathobiological mechanisms. The multitudes of metadata originating from HCV clinical trials as well as low and high-throughput experiments embedded in text corpora can be mined as data sources for the implementation of HCV-specific resources. HCV-customized resources may support the generation of worthy and testable hypothesis and reveal potential research clues to augment the pursuit of efficient diagnostic biomarkers and therapeutic targets. This research thesis report the development of two freely available HCV-specific web-based resources: (i) Dragon Exploratory System on Hepatitis C Virus (DESHCV) accessible via http://apps.sanbi.ac.za/DESHCV/ or http://cbrc.kaust.edu.sa/deshcv/ and (ii) Hepatitis C Virus Protein Interaction Database (HCVpro) accessible via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. DESHCV is a text mining system implemented using named concept recognition and cooccurrence based approaches to computationally analyze about 32, 000 HCV related abstracts obtained from PubMed. As part of DESHCV development, the pre-constructed dictionaries of the Dragon Exploratory System (DES) were enriched with HCV biomedical concepts, including HCV proteins, name variants and symbols to enable HCV knowledge specific exploration. The DESHCV query inputs consist of user-defined keywords, phrases and concepts. DESHCV is therefore an information extraction tool that enables users to computationally generate association between concepts and support the prediction of potential hypothesis with diagnostic and therapeutic relevance. Additionally, users can retrieve a list of abstracts containing tagged concepts that can be used to overcome the herculean task of manual biocuration. DESHCV has been used to simulate previously reported thalidomide-chronic hepatitis C hypothesis and also to model a potentially novel thalidomide-amantadine hypothesis. HCVpro is a relational knowledgebase dedicated to housing experimentally detected HCV-HCV and HCV-human protein interaction information obtained from other databases and curated from biomedical journal articles. Additionally, the database contains consolidated biological information consisting of hepatocellular carcinoma (HCC) related genes, comprehensive reviews on HCV biology and drug development, functional genomics and molecular biology data, and cross-referenced links to canonical pathways and other essential biomedical databases. Users can retrieve enriched information including interaction metadata from HCVpro by using protein identifiers, gene chromosomal locations, experiment types used in detecting the interactions, PubMed IDs of journal articles reporting the interactions, annotated protein interaction IDs from external databases, and via “string searches”. The utility of HCVpro has been demonstrated by harnessing integrated data to suggest putative baseline clues that seem to support current diagnostic exploratory efforts directed towards vimentin. Furthermore, eight genes comprising of ACLY, AZGP1, DDX3X, FGG, H19, SIAH1, SERPING1 and THBS1 have been recommended for possible investigation to evaluate their diagnostic potential. The data archived in HCVpro can be utilized to support protein-protein interaction network-based candidate HCC gene prioritization for possible validation by experimental biologists. / South Africa
2

Development of a Hepatitis C Virus knowledgebase with computational prediction of functional hypothesis of therapeutic relevance

Kojo, Kwofie Samuel January 2011 (has links)
<p>To ameliorate Hepatitis C Virus (HCV) therapeutic and diagnostic challenges requires robust intervention strategies, including approaches that leverage the plethora of rich data published in biomedical literature to gain greater understanding of HCV pathobiological mechanisms. The multitudes of metadata originating from HCV clinical trials as well as low and high-throughput experiments embedded in text corpora can be mined as data sources for the implementation of HCV-specific resources. HCV-customized resources may support the generation of worthy and testable hypothesis and reveal potential research clues to augment the pursuit of efficient diagnostic biomarkers and therapeutic targets. This research thesis report the development of two freely available HCV-specific web-based resources: (i) Dragon Exploratory System on Hepatitis C Virus (DESHCV) accessible via http://apps.sanbi.ac.za/DESHCV/ or http://cbrc.kaust.edu.sa/deshcv/ and (ii) Hepatitis C Virus Protein Interaction Database (HCVpro) accessible via&nbsp / http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. DESHCV is a text mining system implemented using named concept recognition and cooccurrence based&nbsp / approaches to computationally analyze about 32, 000 HCV related abstracts obtained from PubMed. As part of DESHCV development, the pre-constructed dictionaries of the&nbsp / Dragon Exploratory System (DES) were enriched with HCV biomedical concepts, including HCV proteins, name variants and symbols to enable HCV knowledge specific&nbsp / exploration. The DESHCV query inputs consist of user-defined keywords, phrases and concepts. DESHCV is therefore an information extraction tool that enables users to&nbsp / computationally generate association between concepts and support the prediction of potential hypothesis with diagnostic and therapeutic relevance. Additionally, users can&nbsp / retrieve a list of abstracts containing tagged concepts that can be used to overcome the herculean task of manual biocuration. DESHCV has been used to simulate previously&nbsp / reported thalidomide-chronic hepatitis C hypothesis and also to model a potentially novel thalidomide-amantadine hypothesis. HCVpro is a relational knowledgebase dedicated to housing experimentally detected HCV-HCV and HCV-human protein interaction information obtained from other databases and curated from biomedical journal articles.&nbsp / Additionally, the database contains consolidated biological information consisting of hepatocellular carcinoma (HCC) related genes, comprehensive reviews on HCV biology and drug development, functional genomics and molecular biology data, and cross-referenced links to canonical pathways and other essential biomedical databases. Users can retrieve enriched information including interaction metadata from HCVpro by using protein identifiers, gene chromosomal locations, experiment types used in detecting the interactions, PubMed IDs of journal articles reporting the interactions, annotated protein interaction IDs from external databases, and via &ldquo / string searches&rdquo / . The utility of HCVpro&nbsp / has been demonstrated by harnessing integrated data to suggest putative baseline clues that seem to support current diagnostic exploratory efforts directed towards vimentin.&nbsp / Furthermore, eight genes comprising of ACLY, AZGP1, DDX3X, FGG, H19, SIAH1, SERPING1 and THBS1 have been recommended for possible investigation to evaluate their&nbsp / diagnostic potential. The data archived in HCVpro can be&nbsp / utilized to support protein-protein interaction network-based candidate HCC gene prioritization for possible validation by experimental biologists.&nbsp / </p>
3

Development of a Hepatitis C Virus knowledgebase with computational prediction of functional hypothesis of therapeutic relevance

Kojo, Kwofie Samuel January 2011 (has links)
<p>To ameliorate Hepatitis C Virus (HCV) therapeutic and diagnostic challenges requires robust intervention strategies, including approaches that leverage the plethora of rich data published in biomedical literature to gain greater understanding of HCV pathobiological mechanisms. The multitudes of metadata originating from HCV clinical trials as well as low and high-throughput experiments embedded in text corpora can be mined as data sources for the implementation of HCV-specific resources. HCV-customized resources may support the generation of worthy and testable hypothesis and reveal potential research clues to augment the pursuit of efficient diagnostic biomarkers and therapeutic targets. This research thesis report the development of two freely available HCV-specific web-based resources: (i) Dragon Exploratory System on Hepatitis C Virus (DESHCV) accessible via http://apps.sanbi.ac.za/DESHCV/ or http://cbrc.kaust.edu.sa/deshcv/ and (ii) Hepatitis C Virus Protein Interaction Database (HCVpro) accessible via&nbsp / http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. DESHCV is a text mining system implemented using named concept recognition and cooccurrence based&nbsp / approaches to computationally analyze about 32, 000 HCV related abstracts obtained from PubMed. As part of DESHCV development, the pre-constructed dictionaries of the&nbsp / Dragon Exploratory System (DES) were enriched with HCV biomedical concepts, including HCV proteins, name variants and symbols to enable HCV knowledge specific&nbsp / exploration. The DESHCV query inputs consist of user-defined keywords, phrases and concepts. DESHCV is therefore an information extraction tool that enables users to&nbsp / computationally generate association between concepts and support the prediction of potential hypothesis with diagnostic and therapeutic relevance. Additionally, users can&nbsp / retrieve a list of abstracts containing tagged concepts that can be used to overcome the herculean task of manual biocuration. DESHCV has been used to simulate previously&nbsp / reported thalidomide-chronic hepatitis C hypothesis and also to model a potentially novel thalidomide-amantadine hypothesis. HCVpro is a relational knowledgebase dedicated to housing experimentally detected HCV-HCV and HCV-human protein interaction information obtained from other databases and curated from biomedical journal articles.&nbsp / Additionally, the database contains consolidated biological information consisting of hepatocellular carcinoma (HCC) related genes, comprehensive reviews on HCV biology and drug development, functional genomics and molecular biology data, and cross-referenced links to canonical pathways and other essential biomedical databases. Users can retrieve enriched information including interaction metadata from HCVpro by using protein identifiers, gene chromosomal locations, experiment types used in detecting the interactions, PubMed IDs of journal articles reporting the interactions, annotated protein interaction IDs from external databases, and via &ldquo / string searches&rdquo / . The utility of HCVpro&nbsp / has been demonstrated by harnessing integrated data to suggest putative baseline clues that seem to support current diagnostic exploratory efforts directed towards vimentin.&nbsp / Furthermore, eight genes comprising of ACLY, AZGP1, DDX3X, FGG, H19, SIAH1, SERPING1 and THBS1 have been recommended for possible investigation to evaluate their&nbsp / diagnostic potential. The data archived in HCVpro can be&nbsp / utilized to support protein-protein interaction network-based candidate HCC gene prioritization for possible validation by experimental biologists.&nbsp / </p>
4

Development of a hepatitis C virus knowledgebase with computational prediction of functional hypothesis of therapeutic relevance

Samuel, Kojo Kwofie January 2011 (has links)
Philosophiae Doctor - PhD / To ameliorate Hepatitis C Virus (HCV) therapeutic and diagnostic challenges requires robust intervention strategies, including approaches that leverage the plethora of rich data published in biomedical literature to gain greater understanding of HCV pathobiological mechanisms. The multitudes of metadata originating from HCV clinical trials as well as low and high-throughput experiments embedded in text corpora can be mined as data sources for the implementation of HCV-specific resources. HCV-customized resources may support the generation of worthy and testable hypothesis and reveal potential research clues to augment the pursuit of efficient diagnostic biomarkers and therapeutic targets. This research thesis report the development of two freely available HCV-specific web-based resources: (i) Dragon Exploratory System on Hepatitis C Virus (DESHCV) accessible via http://apps.sanbi.ac.za/DESHCV/ or http://cbrc.kaust.edu.sa/deshcv/ and(ii) Hepatitis C Virus Protein Interaction Database (HCVpro) accessible via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/.DESHCV is a text mining system implemented using named concept recognition and cooccurrence based approaches to computationally analyze about 32, 000 HCV related abstracts obtained from PubMed. As part of DESHCV development, the pre-constructed dictionaries of the Dragon Exploratory System (DES) were enriched with HCV biomedical concepts, including HCV proteins, name variants and symbols to enable HCV knowledge specific exploration. The DESHCV query inputs consist of user-defined keywords, phrases and concepts. DESHCV is therefore an information extraction tool that enables users to computationally generate association between concepts and support the prediction of potential hypothesis with diagnostic and therapeutic relevance.Additionally, users can retrieve a list of abstracts containing tagged concepts that can be used to overcome the herculean task of manual biocuration. DESHCV has been used to simulate previously reported thalidomide-chronic hepatitis C hypothesis and also to model a potentially novel thalidomide-amantadine hypothesis.HCVpro is a relational knowledgebase dedicated to housing experimentally detected HCV-HCV and HCV-human protein interaction information obtained from other databases and curated from biomedical journal articles. Additionally, the database contains consolidated biological information consisting of hepatocellular carcinoma(HCC) related genes, comprehensive reviews on HCV biology and drug development,functional genomics and molecular biology data, and cross-referenced links to canonical pathways and other essential biomedical databases. Users can retrieve enriched information including interaction metadata from HCVpro by using protein identifiers,gene chromosomal locations, experiment types used in detecting the interactions, PubMed IDs of journal articles reporting the interactions, annotated protein interaction IDs from external databases, and via “string searches”. The utility of HCVpro has been demonstrated by harnessing integrated data to suggest putative baseline clues that seem to support current diagnostic exploratory efforts directed towards vimentin. Furthermore,eight genes comprising of ACLY, AZGP1, DDX3X, FGG, H19, SIAH1, SERPING1 and THBS1 have been recommended for possible investigation to evaluate their diagnostic potential. The data archived in HCVpro can be utilized to support protein-protein interaction network-based candidate HCC gene prioritization for possible validation by experimental biologists.
5

Discovering relations between indirectly connected biomedical concepts

Tsatsaronis, George, Weissenborn, Dirk, Schroeder, Michael 04 January 2016 (has links) (PDF)
BACKGROUND: The complexity and scale of the knowledge in the biomedical domain has motivated research work towards mining heterogeneous data from both structured and unstructured knowledge bases. Towards this direction, it is necessary to combine facts in order to formulate hypotheses or draw conclusions about the domain concepts. This work addresses this problem by using indirect knowledge connecting two concepts in a knowledge graph to discover hidden relations between them. The graph represents concepts as vertices and relations as edges, stemming from structured (ontologies) and unstructured (textual) data. In this graph, path patterns, i.e. sequences of relations, are mined using distant supervision that potentially characterize a biomedical relation. RESULTS: It is possible to identify characteristic path patterns of biomedical relations from this representation using machine learning. For experimental evaluation two frequent biomedical relations, namely \"has target\", and \"may treat\", are chosen. Results suggest that relation discovery using indirect knowledge is possible, with an AUC that can reach up to 0.8, a result which is a great improvement compared to the random classification, and which shows that good predictions can be prioritized by following the suggested approach. CONCLUSIONS: Analysis of the results indicates that the models can successfully learn expressive path patterns for the examined relations. Furthermore, this work demonstrates that the constructed graph allows for the easy integration of heterogeneous information and discovery of indirect connections between biomedical concepts.
6

Discovering relations between indirectly connected biomedical concepts: Research Article

Tsatsaronis, George, Weissenborn, Dirk, Schroeder, Michael 04 January 2016 (has links)
BACKGROUND: The complexity and scale of the knowledge in the biomedical domain has motivated research work towards mining heterogeneous data from both structured and unstructured knowledge bases. Towards this direction, it is necessary to combine facts in order to formulate hypotheses or draw conclusions about the domain concepts. This work addresses this problem by using indirect knowledge connecting two concepts in a knowledge graph to discover hidden relations between them. The graph represents concepts as vertices and relations as edges, stemming from structured (ontologies) and unstructured (textual) data. In this graph, path patterns, i.e. sequences of relations, are mined using distant supervision that potentially characterize a biomedical relation. RESULTS: It is possible to identify characteristic path patterns of biomedical relations from this representation using machine learning. For experimental evaluation two frequent biomedical relations, namely \'has target\', and \'may treat\', are chosen. Results suggest that relation discovery using indirect knowledge is possible, with an AUC that can reach up to 0.8, a result which is a great improvement compared to the random classification, and which shows that good predictions can be prioritized by following the suggested approach. CONCLUSIONS: Analysis of the results indicates that the models can successfully learn expressive path patterns for the examined relations. Furthermore, this work demonstrates that the constructed graph allows for the easy integration of heterogeneous information and discovery of indirect connections between biomedical concepts.

Page generated in 0.2938 seconds