Spelling suggestions: "subject:"biomimetic models"" "subject:"biomimetics models""
1 |
Mn(III)-porfirinas como catalisadores biomiméticos: estabilidade térmica e imobilização em vermiculita e sílica gel funcionalizada para hidroxilação de alcanosPinto, Victor Hugo e Araujo 03 November 2013 (has links)
Made available in DSpace on 2015-05-14T13:21:34Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 8221472 bytes, checksum: cac315a193674c3a77482441306e409a (MD5)
Previous issue date: 2013-11-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / An alternative route for the synthesis of the three isomers of Mn(III)
N-metylpyridylporphyrins, MnTM-X-PyPCl5 (X = 2, 3, 4) was developed by the direct
methylation of MnT-X-PyPCl (X = 2, 3, 4) with methyl tosylate; this methodology may be
adapted for preparing the longer-alkyl-chain analogues. The investigation of the thermal
stability of the potent redox modulator Mn(III) meso-tetrakis(N-ethylpyridinium-2-
yl)porphyrin chloride (MnTE-2-PyPCl5) showed that the thermal decomposition of
MnTE-2-PyPCl5∙11H2O under air occurs in three successive steps: dehydration,
dealkylation (ethyl chloride loss) and combustion, to yield Mn oxide as final residue.
Heating MnTE-2-PyPCl5∙11H2O up to ~100 ºC leads to dehydration, but with no effect
onto the catalytic SOD activity after rehydration/dissolution. Heating the sample at
temperatures above 100 ºC leads to dealkylation, which affects catalytic and biological
properties. The immobilization of the neutral Mn porphyrins (MnPs) MnT-X-PyPCl (X =
2, 3, 4) covalently onto chloropropyl silica-gel (Sil-Cl) or the cationic MnPs
MnTM-X-PyPCl5 (X = 2, 3, 4) electrostatically into sodium vermiculite (verm) yielded
stable biomimetic models of cytochromes P450. The resulting materials,
Sil-Cl/MnT-X-PyPCl e verm/MnTM-X-PyPCl5 (X = 2, 3, 4), were used as oxidation
catalyst for hydroxylation of cyclohexane and adamantane by iodosylbenzene. The
heterogeneous systems were more efficient, selective, and oxidatively stable than the
homogeneous counterparts, and could be reused three times with no significant loss in
efficiency. The use of more drastic conditions (i.e., large excess of PhIO), led to
considerable decrease in efficiency, which was partial recovered upon catalyst reuse
uner milder conditions, indicating that the support protects the supported MnP against
oxidative degradation. The materials efficiently catalyzed the oxidation of cyclohexanol
to cyclohexanone, suggesting that the ketone observed during cyclohexane
hydroxylation may result, at least partially, from cyclohexanol oxidation. The covalent
bond between Sil-Cl and MnPs via N-pyridyl moiety allowed the preparation of efficient
and stable catalysts, even with first generation, simple MnPs, such as MnT-X-PyPCl (X
= 2, 3, 4). Vermiculite was revealed as a simple and effective support for rapid and
qualitative immobilization of cationic MnPs, MnTM-X-PyPCl5 (X = 2, 3, 4). Grinding of the
vermiculite-based materials decreased the crystallinity of the systems, which was
followed by an increase in the catalytic efficiency of the meta and para isomers
verm/MnTM-X-PyPCl5 (X = 3 and 4), but did not affect of the high efficiency of the
immobilized ortho isomer (verm/MnTM-2-PyPCl5), whose resistance to oxidative
destruction and/or leaching was, additionally, higher than that of the other isomers. / Neste trabalho foi desenvolvida uma rota alternativa para obtenção dos três isômeros
das N-metilpiridinioporfirinas de Mn(III), MnTM-X-PyPCl5 (X = 2, 3, 4), a partir da
metilação direta dos complexos MnT-X-PyPCl (X = 2, 3, 4) com tosilato de metila; esta
metodologia pode ser adaptada para obtenção de derivados alquilas de cadeias
maiores. A investigação da estabilidade térmica do modulador redox potente cloreto de
meso-tetraquis(N-etilpiridinio-2-il)porfirinatomanganês(III) (MnTE-2-PyPCl5) revelou que
a decomposição térmica da MnTE-2-PyPCl5∙11H2O em ar ocorre em três etapas
sucessivas, associadas à desidratação, desalquilação (perda dos grupos EtCl) e
combustão, levando a óxidos de Mn como resíduo final. O aquecimento da MnTE-2-
PyPCl5∙11H2O até ~100 °C leva à desidratação, mas não afeta a atividade catalítica
SOD após a re-hidratação/dissolução. O aquecimento da amostra à temperatura
elevada (>100 oC) leva à desalquilação e compromete as propriedades catalíticas e
biológicas da amostra. O desenvolvimento de modelos biomiméticos dos citocromos
P450 pela heterogeneização covalente das Mn-porfirinas (MnPs) neutras MnT-X-PyPCl
(X = 2, 3, 4) na sílica cloropropil (Sil-Cl) e pela heterogeneização eletrostática das MnPs
catiônicas MnTM-X-PyPCl5 (X = 2, 3, 4) na vermiculita de sódio (verm) foi estudado. Os
materiais resultantes, Sil-Cl/MnT-X-PyPCl e verm/MnTM-X-PyPCl5 (X = 2, 3, 4), foram
empregados como catalisadores em reações de hidroxilação de cicloexano e
adamantano por iodosilbenzeno (PhIO). Os catalisadores heterogeneizados foram mais
eficientes, seletivos e resistentes à destruição oxidativa do que os catalisadores em
meio homogêneo, e foram reutilizados por três vezes sem perda significativa na
eficiência catalítica. Sob condições mais drásticas, com o uso de grande excesso de
PhIO, há diminuição considerável da eficiência, mas os catalisadores imobilizados
puderam ser reutilizados com recuperação parcial da eficiência, o que indica que o
suporte exerce proteção das MnPs contra degradação oxidativa. Os catalisadores
heterogeneizados foram eficientes ao catalisar a oxidação do cicloexanol à
cicloexanona, sugerindo que a cetona observada nas hidroxilações pode advir da
oxidação seqüencial, cicloexano-cicloexanol-cicloexanona. A ligação covalente entre a
Sil-Cl e as MnPs via grupo N-piridil possibilitou a obtenção de catalisadores eficientes e
estáveis, mesmo utilizando MnPs simples de primeira geração, MnT-X-PyPCl (X = 2, 3,
4). Já a vermiculita mostrou-se um suporte simples e efetivo para imobilização rápida e
quantitativa de MnPs catiônicas, MnTM-X-PyPCl5 (X = 2, 3, 4). A pulverização dos
materiais à base de vermiculita diminuiu a cristalinidade dos sistemas, promoveu um
aumento na eficiência dos isômeros meta e para (verm/MnTM-X-PyPCl5, X = 3 e 4), mas
não modificou a alta eficiência do isômero orto imobilizado (verm/MnTM-2-PyPCl5), cuja
resistência à destruição oxidativa e/ou lixiviação foi superior à dos outros isômeros.
|
2 |
Studies of the impact of core-shell polystyrene nanoparticles on cell membranes and biomimetic models / Étude des interactions de nanoparticules "coeur-enveloppe" avec des cellules et des membranes biomimétiquesMaximilien, Jacqueline 10 April 2015 (has links)
L’objectif de ce projet est d’étudier l’interaction de nanoparticules polymères avec les membranes, soit directement sur des cellules entières ou grâce à des modèles membranaires biomimétiques, dans l’optique de valider leur utilisation dans le cadre d’applications biologiques. Des nanoparticules (NPs) polymères cœur/enveloppe avec un diamètre inférieur à 100 nm ont été synthétisés. Cette taille a été choisie afin de leur permettre de pénétrer à travers les membranes plasmiques. Des nanoparticules ayant la même composition chimique mais avec un diamètre hydrodynamique supérieur, de l’ordre de 250 nm, ont été également préparées afin de mettre en évidence l’effet de la taille des particules sur le processus d’internalisation cellulaire. Dans cette thèse, une méthode innovante de synthèse monotope a été développée pour obtenir des NPs coeur-enveloppe, compatibles en milieu aqueux et présentant à leur surface des résidus iniferter. Le coeur est composé de polystyrène avec une taille d’environ 30 nm. Un large éventail de fonctionnalités peut être greffé sur la surface du coeur par polymérisation radicalaire contrôlée en faisant varier différents types de monomères. L’épaisseur de l’enveloppe peut être ajustée en fonction de la concentration en monomère et du temps de polymérisation. Les nanoparticules synthétisées ont été caractérisées par diffusion dynamique de la lumière, par spectroscopie infrarouge à transformée de Fourier, par analyse micro-élémentaire et par microcopie à transmission électronique. Les interactions des NPs à coeur polystyrène et avec des enveloppes de charge neutre et négative ont été étudiées avec des cellules kératinocytes épidermiques humaines néonatales (NHEK), des fibroblastes primaires humains et les cellules HACaT de kératinocytes humains. Les études de cytotoxicité réalisées en utilisant un marquage à l’iodure de propidium et un test à la lactate déshydrogénase n’ont relevé aucune toxicité sur les lignées testées. Cependant, le suivi de la prolifération cellulaire par impédance électrique de substrats cellulaires a indiqué que les nanoparticules anioniques induisent une forte diminution de la prolifération des kératinocytes. L’internalisation cellulaire des NPs a été confirmée par microscopie confocale qui n’indique pas leur colocalisation avec les endosomes précoces, les lysosomes et l’actine. De plus, les données obtenues par triage cellulaire par cytofluorométrie soutiennent qu’un mécanisme énergétiquement-dépendant est mis en œuvre pour l’internalisation des NP neutres, ce qui semble être moins le cas pour les nanoparticules négatives. Les membranes biomimétiques ont été employées afin d’étudier les spécificités des interactions entre nanoparticules et lipides dans des conditions contrôlées. L’étude sur des modèles de vésicules géantes couplée à de la spectroscopie de fluorescence a révélé que les nanoparticules coeur/enveloppe sont capables d’interagir profondément dans la région hydrophobe de la membrane, mais uniquement quand la bicouche lipide est en phase fluide désordonnée. Le mode de pénétration des NPs au travers de la bicouche des vésicules semblent engendrer la formation de pores. Un effet plus prononcé de rigidification de la bicouche a pu être observé lors de l’interaction de nanoparticules chargées négativement avec les bicouches de phosphatidycholines. Cet effet pourrait être attribué à un changement de l’orientation des têtes phosphocholines du à des interactions électrostatiques. En conclusion, les nanoparticules polymère que nous avons synthétisées apparaissent être des outils polyvalents pour les études d’interaction cellulaire et d’imagerie. Ces nanomatériaux peuvent être éventuellement être employés pour la délivrance de médicaments en incorporant les molécules actives dans une enveloppe polymère thermosensible par exemple. / This project’s aim was to study polymeric nanoparticle-membrane interactions using both live cells and biomimetic models with the idea to validate such nanoparticles for use in bio-applications. Core-shell polymeric nanoparticles below 100 nm, as this small size is capable of penetrating plasma membranes, were synthesised. Nanoparticles (NPs) with the same chemical composition but with hydrodynamic diameters of ~250 nm, were also prepared in an effort to highlight any effect of NP size on cell internalisation. In this thesis, an innovative method is presented for the synthesis of water-compatible, iniferter-bound polystyrene core shell NPs (~30 nm) using a one-pot synthetic method. A plethora of functionalities could be added to the nanoparticles via shell grafting from the surface of the polystyrene core in the presence of additional monomers via controlled living radical polymerisation. Shell thickness could be tuned as a function of monomer’s concentration and polymerisation time. The nanoparticles were fully characterised by dynamic light scattering, Fourier transform infra-red spectroscopy, microelemental analysis and transmission electron microscopy. Further, the interactions of polystyrene core NPs possessing neutral and anionic shells were investigated using neonatal human epidermal keratinocytes (NHEK), human primary fibroblasts and HaCaT cells. Cytotoxicity studies performed using propidium iodide and lactate dehydrogenase indicated no evidence of cytotoxicity in either cell line. However, cell proliferation monitored by electric cell substrate impedance sensing (ECIS) protocols indicated that anionic nanoparticles induced a dramatic decrease in cell proliferation in keratinocytes. The cellular internalisation of NPs was confirmed by confocal microscopy and no co-localisation was found with early endosomes, lysosomes or actin. Additionally, fluorescence activated cell sorting (FACS) data support the theory that an energy-dependent mechanism is employed for neutral NP internalisation but less so for negatively charged NPs. Biomimetic membrane models were used to investigate specific nanoparticle-lipid interactions under controlled conditions. Employing giant vesicles coupled with fluorescent spectroscopy techniques revealed that core-shell nanoparticles interact deep in the hydrophobic region of bilayers only when the membrane is in the fluid phase. Their mode of entering artificial cells (i.e giant vesicles) appears to cause the formation of pores. Anionic nanoparticles interact with the choline moiety of phosphatidylcholine and confer a rigidifying effect on phosphocholine containing bilayers. Therefore we conclude that the polymeric nanoparticles that we synthesized are versatile tools for cell interaction and imaging studies. These nanomaterials could eventually be applied to drug delivery studies by incorporation of the drug in for instance a thermoresponsive polymeric shell. Furthermore, it is clear that NPs coated with anionic and neutral polymeric shells present a lower toxicity profile than previously reported cationic nanoparticles. Both nanoparticles increase the order lipid bilayer vesicles composed of POPC (the most common glycerophospholipid) in animal and plants. Anionic nanoparticles in particular exhibit a rigidifying effect on POPC lipid bilayers and their mode of entry into cells may be due to the formation of pores which was determined to not induce cell death.
|
3 |
Identification des intermédiaires de la réduction du dioxygène par la cytochrome c oxydase et ses modèles en faisant appel à la spectroscopie IR différentielle / Identification of the oxygen reaction intermediates of cytochrome c oxydase and its models by differential infrared spectroscopyOueslati, Nesrine 06 July 2012 (has links)
La cytochrome c oxydase (CcO) est un complexe protéique commun à tous les organismes aérobies. Elle catalyse la réduction de l’oxygène en eau au niveau d’un site catalytique qui contient un atome de fer hémique et un atome de cuivre (CuB). La famille de ces oxydases est ainsi appelée super famille des oxydases à "hème-cuivre". Malgré le grand nombre d’études réalisées au sujet de l’activité catalytique des CcO, le déroulement exact des étapes de leur mécanisme reste encore mal connu. Afin de mieux cerner le problème de la relation structure-activité de cette hémoprotéine, deux approches distinctes et complémentaires ont été abordées : l’étude du système naturel et l’approche biomimétique. Les propriétés électroniques et vibrationnelles de certains intermédiaires du cycle catalytique de la cytochrome c oxydase ont été caractérisées par spectroscopies UV-Visible, de fluorescence résolue en temps et infrarouge. L’analyse du site actif de la CcO par des substitutions isotopiques du CuB, ainsi que l’influence du pH sur la structure de cet enzyme sont discutées. La deuxième partie de ce travail concerne l’étude du rôle de l’environnement proche de l’hème sur la réactivité des complexes FeII-CO et FeII-O2 grâce à une série de modèles superstructurés du centre binucléaire Fe/Cu de la CcO. Ces analogues synthétiques conservent l’hème, la ligation fer-histidine du site proximal et le ligand complexant le cuivre du site distal de la CcO, mais se différencient notamment par leur environnement autour de l’atome de cuivre et par leur rigidité. Deux techniques ont été utilisées: la spectroscopie ATR-IRTF et la photochimie dans le cas d’espèces carbonylées. / Cytochrome c Oxidase (CcO), a member of the heme-copper oxidase superfamily, is a membrane protein in many aerobic organisms, that catalyses the reduction of dioxygen to water. Dioxygen binding and reduction occurs at a heterobinuclear site that is comprised of a heme a3, and a copper atom (CuB) in close proximity. Despite, the CcO has been the subject of numerous biophysical and spectroscopic investigations, the detailed molecular mechanism of CcO remains still elusive. In order to better define the structure-function relationship for this hemoprotein, two distinct and complementary approaches have been employed: the study of the natural system and the biomimetic approach.Structural changes accompanying the change in the redox state of some CcO intermediates have been characterised by UV-Visible, ATR-FTIR and time-resolved fluorescence spectroscopies. The study of the cytochrome c oxydase active site modified with isotopic substitutions of CuB, and the effect of pH on the structure are discussed. The second part of this work is related to study the role of environment on the reactivity of FeII-CO et FeII-O2 complexes by exploiting a series of superstructured models of the binuclear Fe/Cu active site of CcO. Based upon a porphyrin core, all these models have the iron-histidine ligation of the proximal site and the copper ligand of the distal site of CcO but they differ strongly by the environment around the copper and their rigidity.
|
Page generated in 0.075 seconds