• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 55
  • 49
  • 26
  • 26
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Probing the Biosynthesis and Mode of Action of Azinomycin B

Kelly, Gilbert Thomson 2009 August 1900 (has links)
Since the isolation of azinomycins A and B in 1954 from the soil bacterium, Streptomyces sahachiroi, these natural products have been synthetic targets. Both compounds exhibit in vitro cytotoxic activity at submicromolar levels and demonstrate anti-tumor activities comparable to that of mitomycin C in vivo. Unique to this class of natural products is the presence of an aziridine [1,2-a] pyrrolidine ring system. Coupled with an epoxide moiety, these structural functionalities impart the ability to form interstrand cross-links with DNA via the electrophilic C10 and C21 carbons of azinomycin and the N7 positions of suitably disposed purine bases. This dissertation investigates the global impact of azinomycin B treatment in a yeast model with special emphasis on DNA damage response, the resulting cell cycle effects, and cellular localization of the compound. The results provide the first demonstration of the in vivo actions of azinomycin B and are consistent with the proposed role of the drug as a DNA crosslinking agent. Biosynthesis of azinomycin B was investigated and appears to have polyketide, non-ribosomal peptide synthetase and alkaloid origins. In pursuit of elucidating the biosynthetic origin we developed both a cell culturing system and a cell-free extract procedure capable of supporting azinomycin synthesis; we used these. These were employed with labeled metabolites to probe the biosynthetic origins of the molecule. Investigations with this enzyme preparation imparted important information regarding the substrate and cofactor requirements of the pathway. These results supported the premise of a mixed origin for the biosynthesis of the molecule and paved the way for expansive stable isotope labeling studies, which largely revealed the biosynthetic precursors and probable construction of the azinomycins. Some of these studies corroborate while other results conflict with initial proposed biosynthetic routes based upon the azinomycin biosynthetic gene cluster sequence. Future azinomycin biosynthetic gene cluster enzyme characterization, mechanistic investigations, and genetic modifications will ultimately provide definitive proof for the intermediacy of proposed biosynthetic precursors and the involvement of specific cofactors. Better understanding of how nature constructs unique molecule may provide insight into eventual chemoenzymatic/gene thearapy based approaches toward cancer therapy.
12

Molybdenum hydroxylases from bovine kidney and liver

Baum, Kenneth Michael. January 1900 (has links)
Thesis (M.S.)--The University of North Carolina at Greensboro, 2008. / Directed by Bruce Banks; submitted to the Dept. of Chemistry. Title from PDF t.p. (viewed Jul. 31, 2009). Includes bibliographical references (p. 95-102).
13

Studies on the Non-covalent Interactions (Stereoelectronics, Stacking and Hydrogen Bonding) in the Self-assembly of DNA and RNA

Acharya, Parag January 2003 (has links)
<p>This thesis is based on ten publications (Papers I-X). The phosphodiester backbone makes DNA or RNA to behave as polyelectrolyte, the pentose sugar gives the flexibility, and the aglycones promote the self-assembly or the ligand-binding process. The hydrogen bonding, stacking, stereoelectronics and hydration are few of the important non-covalent forces dictating the self-assembly of DNA/RNA. The pH-dependent thermodynamics clearly show (Papers I and II) that a change of the electronic character of aglycone modulates the conformation of the sugar moiety by the tunable interplay of stereoelectronic anomeric and <i>gauche</i> effects, which are further transmitted to steer the sugar-phosphate backbone conformation in a cooperative manner. 3'<i>-</i>anthraniloyl<b> </b>adenosine<b> </b>(a mimic of 3'-teminal CC<u>A</u><sub>OH</sub> of the aminoacyl-tRNA<sup>Phe</sup>) binds to EF-Tu*GTP in preference over 2'<i>-</i>anthraniloyl<b> </b>adenosine<b>, </b>thereby showing (Paper III) that the 2’-<i>endo</i> sugar conformation is a more suitable mimic of the transition state geometry than the 3’<i>-endo</i> conformation in discriminating between correctly and incorrectly charged aminoacyl-tRNA<sup>Phe</sup> by EF-Tu during protein synthesis. The presence of 2'-OH in RNA distinguishes<sup> </sup>it from DNA both functionally<sup> </sup>as well as structurally. This work (Paper IV) provides straightforward NMR evidence to show that the 2'-OH is intramolecularly hydrogen bonded with the vicinal 3'-oxygen, and the exposure of the 3'<i>-</i>phosphate of the ribonucleotides to the bulk water determines the availability of the bound water around the vicinal 2'-OH, which then can play various functional role through inter- or intramolecular interactions. The pH-dependent <sup>1</sup>H NMR study with nicotinamide derivatives demonstrates (Paper V) that the cascade of intramolecular cation (pyridinium)-π(phenyl)-CH(methyl) interaction in edge-to-face geometry is responsible for perturbing the p<i>K</i><sub>a</sub> of the pyridine-nitrogen as well as for the modulation of the aromatic character of the neighboring phenyl moiety, which is also supported by the T<sub>1</sub> relaxation studies and <i>ab initio</i> calculations. It has been found (Papers VI-IX) that the variable intramolecular electrostatic interaction between electronically coupled nearest neighbor nucleobases (steered by their respective microenvironments) can modulate their respective pseudoaromatic characters. The net result of this pseudoaromatic cross-modulation is the creation of a unique set of aglycones in an oligo or polynucleotide, whose physico-chemical properties are completely dependent upon the propensity and geometry of the nearest neighbor interactions (extended genetic code). The propagation of the interplay of these electrostatic interactions across the hexameric ssDNA chain is considerably less favoured (effectively up to the fourth nucleobase) compared to that of the isosequential ssRNA (up to the sixth nucleobase). The dissection of the relative strength of basepairing and stacking in a duplex shows that stability of DNA-DNA duplex weakens over the corresponding RNA-RNA duplexes with the increasing content of A-T/U base pairs, while the strength of stacking of A-T rich DNA-DNA duplex increases in comparison with A-U rich sequence in RNA-RNA duplexes (Paper X).</p>
14

Studies on the Non-covalent Interactions (Stereoelectronics, Stacking and Hydrogen Bonding) in the Self-assembly of DNA and RNA

Acharya, Parag January 2003 (has links)
This thesis is based on ten publications (Papers I-X). The phosphodiester backbone makes DNA or RNA to behave as polyelectrolyte, the pentose sugar gives the flexibility, and the aglycones promote the self-assembly or the ligand-binding process. The hydrogen bonding, stacking, stereoelectronics and hydration are few of the important non-covalent forces dictating the self-assembly of DNA/RNA. The pH-dependent thermodynamics clearly show (Papers I and II) that a change of the electronic character of aglycone modulates the conformation of the sugar moiety by the tunable interplay of stereoelectronic anomeric and gauche effects, which are further transmitted to steer the sugar-phosphate backbone conformation in a cooperative manner. 3'-anthraniloyl<b> </b>adenosine<b> </b>(a mimic of 3'-teminal CC<u>A</u>OH of the aminoacyl-tRNAPhe) binds to EF-Tu*GTP in preference over 2'-anthraniloyl<b> </b>adenosine<b>, </b>thereby showing (Paper III) that the 2’-endo sugar conformation is a more suitable mimic of the transition state geometry than the 3’-endo conformation in discriminating between correctly and incorrectly charged aminoacyl-tRNAPhe by EF-Tu during protein synthesis. The presence of 2'-OH in RNA distinguishes it from DNA both functionally as well as structurally. This work (Paper IV) provides straightforward NMR evidence to show that the 2'-OH is intramolecularly hydrogen bonded with the vicinal 3'-oxygen, and the exposure of the 3'-phosphate of the ribonucleotides to the bulk water determines the availability of the bound water around the vicinal 2'-OH, which then can play various functional role through inter- or intramolecular interactions. The pH-dependent 1H NMR study with nicotinamide derivatives demonstrates (Paper V) that the cascade of intramolecular cation (pyridinium)-π(phenyl)-CH(methyl) interaction in edge-to-face geometry is responsible for perturbing the pKa of the pyridine-nitrogen as well as for the modulation of the aromatic character of the neighboring phenyl moiety, which is also supported by the T1 relaxation studies and ab initio calculations. It has been found (Papers VI-IX) that the variable intramolecular electrostatic interaction between electronically coupled nearest neighbor nucleobases (steered by their respective microenvironments) can modulate their respective pseudoaromatic characters. The net result of this pseudoaromatic cross-modulation is the creation of a unique set of aglycones in an oligo or polynucleotide, whose physico-chemical properties are completely dependent upon the propensity and geometry of the nearest neighbor interactions (extended genetic code). The propagation of the interplay of these electrostatic interactions across the hexameric ssDNA chain is considerably less favoured (effectively up to the fourth nucleobase) compared to that of the isosequential ssRNA (up to the sixth nucleobase). The dissection of the relative strength of basepairing and stacking in a duplex shows that stability of DNA-DNA duplex weakens over the corresponding RNA-RNA duplexes with the increasing content of A-T/U base pairs, while the strength of stacking of A-T rich DNA-DNA duplex increases in comparison with A-U rich sequence in RNA-RNA duplexes (Paper X).
15

Efficient Carbohydrate Synthesis By Intra- and Supramolecular Control

Dong, Hai January 2009 (has links)
The Lattrell-Dax method of nitrite-mediated substitution of carbohydrate triflates is an efficient method to generate structures of inverse configuration. In this study, the effects of the neighboring group on the Lattrell-Dax inversion were explored. A new carbohydrate/anion host-guest system was discovered and the ambident reactivity of the nitrite anion was found to cause a complicated behavior of the reaction. It has been demonstrated that a neighboring equatorial ester group plays a highly important role in this carbohydrate epimerization reaction, restricting the nitrite N-attack, thus resulting in O-attack only and inducing the formation of inversion compounds in good yields. Based on this effect, efficient synthetic routes to a range of carbohydrate structures, notably β-D-mannosides and β-D-talosides, were designed by use of double parallel and double serial inversion. A supramolecularly activated, triggered cascade reaction was also developed. This cascade reaction is triggered by a deprotonation process that is activated by anions. It was found that the anions can activate this reaction following their hydrogen bonding tendencies to the hydroxyl group in aprotic solvents. / QC 20100709
16

Chemoenzymová synthesa antivirálních profarmak / Chemo-enzymatic synthesis of antiviral prodrugs

Tupec, Michal January 2015 (has links)
Lipases have been widely applied in the manufacture of food products and in some areas of the industry, nowadays they are used in synthetic organic chemistry catalyzing the hydrolytic/esterification reactions under very mild conditions in the field of protecting groups or enantiomer resolution. In this study, the commercial lipase from bacterium Pseudomonas fluorescens was immobilized using the sol-gel process into organosilicate materials with propyl, octyl or phenyl substituents. The highest hydrolytic activity was found in the enzyme on the octyl-derived carrier. The immobilized enzymes differ in their hydrolytic activities on 4-nitrophenyl esters of various lengths. Subsequent experiments revealed quite good pH stability of the enzymes in a buffer (incubations in pH 3 through pH 11), as well as good temperature stability in isooctane (incubations at up to 100 řC). The majority of organic solvents seem to have no substantial effect on the lipase activity. The biocatalytic properties were studied on a model compound from the group of the acyclic nucleoside analogues - 9-(2',3'-dihydroxypropyl)adenine (DHPA). It was found for example that the best acyl donors are vinyl esters, that the lipase shows a preference towards longer vinyl esters, that the reaction proceeds faster in non-polar solvents or that it...
17

Aspects of Antisense and Antigene Chemistry of Oligonucleotides Tethered to Intercalators

Ossipov, Dimitri January 2002 (has links)
<p>Synthetic and physicochemical studies on appropriately functionalized ODN-conjugates have been performed to evaluate their abilities to act as antisense agents against RNA or as intramolecular DNA cross-linking agents. Intercalating aromatic systems [phenazine (Pnz), dipyridophenazine (DPPZ)] and metallointercalators such as Ru<sup>2+</sup>(phen)<sub>2</sub>(DPPZ) and Ru<sup>2+</sup>(tpy)(DPPZ)<b>L</b> [where <b>L</b> = chemically or photochemically labile ligand, phen = phenanthroline, tpy = terpyridine], which are covalently tethered to the oligo-deoxynucleotides (ODNs), have been chosen for this purpose. The ODN-conjugates were typically prepared by automated solid phase synthesis using phosphoramidite building blocks, or on solid supports, both functionalized with the chromophore groups. The photosensitive metal complex, Ru<sup>2+</sup>(tpy)(DPPZ)(CH<sub>3</sub>CN), has been incorporated by post-synthetic coupling to the amino-linker modified ODNs <i>via</i> an amide bond. The intercalating ability of the tethered chromophores gave enhanced stability of the duplexes and triplexes formed with ODN-conjugates and their complementary targets: DNA, RNA, or double-stranded DNA. The conjugation of DPPZ chromophore to ODN (at 3', 5' or at the middle) led us to incorporate Ru<sup>2+</sup>(phen)<sub>2</sub>(DPPZ) through the DPPZ ligand, for the first time. The corresponding (Ru<sup>2+</sup>-ODN)•DNA duplexes showed dramatic stabilization (ΔT<sub>m</sub> = 19.4 – 22.0ºC). The CD and DNase I footprinting experiments suggest that the stabilization is owing to metallointercalation by threading of the Ru<sup>2+</sup>(phen)<sub>2</sub> moiety through the ODN•DNA duplex core, thus "stapling" the two helical strands from the minor to major groove. On the other hand, Ru<sup>2+</sup>(tpy)(DPPZ)(CH<sub>3</sub>CN)-ODN conjugates represent a new class of oligonucleotides containing the photoactivatible Ru<sup>2+</sup> complexes, which can successfully crosslink to the complementary strand. The mechanism of cross-linking upon photoirradiation of [Ru<sup>2+</sup>(tpy)(DPPZ)(CH<sub>3</sub>CN)-ODN]•DNA involves <i>in situ</i> conversion to the reactive [Ru<sup>2+</sup>(tpy)(DPPZ)(H<sub>2</sub>O)-ODN]•DNA which are subsequently cross-linked through the G residue of the complementary DNA strand. All starting materials and products have been purified by HPLC and/or by PAGE and subsequently characterized by MALDI-TOF as well as ESI mass spectroscopy. Terminal conjugation of the planar Pnz and DPPZ groups through the flexible linkers were also shown to improve thermal stability of the ODN•RNA hybrid duplexes without alteration of the initial AB-type global helical structure as revealed from CD experiments. As a result, RNase H mediated cleavage of the RNA strand in the intercalator-tethered ODN•RNA duplexes was more efficient compared to the natural counterpart. The RNase H cleavage pattern was also found to be dependent on the chemical nature of the chromophore. It appeared that introduction of a tether at the 3'-end of the ODN can be most easily tolerated by the enzyme regardless of the nature of the appending chromophore. The tethered DPPZ group has also been shown to chelate Cu<sup>2+</sup> and Fe<sup>3+</sup>, like phenanthroline group, followed by the formation of redox-active metal complex which cleaves the complementary DNA strand in a sequence-specific manner. This shows that the choice of appropriate ligand is useful to (i) attain improved intercalation giving Tm enhancement, and (ii) sequence-specifically inactivate target RNA or DNA molecules using multiple modes of chemistry (RNase H mediated cleavage, free-radical, oxidative pathways or photocross-linkage).</p>
18

Studies on Nucleic Acids – Structure and Dynamics

Isaksson, Johan January 2005 (has links)
<p>This thesis is based on six papers, Papers I-VI, focusing on the interplay between the stabilizing elements of nucleic acids self-assembly; hydrogen bonding, stacking and solvent effects. In Paper I we investigate how the substitution of the O4' for CH<sub>2</sub> in the sugar moiety of adenosine (2'-deoxyaristeromycin) at the A<sup>6</sup> position of the Dickerson-Drew dodecamer makes the two modified bases exist in a dynamic equilibrium between Hoogsteen and Watson-Crick base pairing in the NMR time scale. Paper II is a structural study of the incorporation of 1-(1',3'-<i>O</i>-anhydro-<i>β</i>-D-psicofuranosyl)thymine in the T<sup>7</sup> position of the Dickerson-Drew dodecamer. NMR constrained molecular dynamics and hydration studies show the base-base distortions caused by the introduction of a North-type locked sugar in an otherwise B-type DNA•DNA duplex. Paper III shows that the stacking distortion caused by the 1-(1',3'-<i>O</i>-anhydro-<i>β</i>-D-psicofuranosyl)thymine building block perturbs the charge transfer similar to a DNA mismatch. Paper IV highlights how the sequence context affects the physico-chemical properties, monitored by the p<i>K</i><i>a</i> of guanine itself as well as how the charge perturbation is experienced by the neighboring bases, in ssDNA and ssRNA. Paper V focuses on the differences between the structural equilibria of single-stranded ssDNA and ssRNA. Directional differences in single-stranded stacking between ssDNA and ssRNA are identified and provide a basis to explain directional differences in p<i>K</i><i>a</i> modulation and dangling-end stabilization. In Paper VI the thermodynamic gains of dangling ends on DNA and RNA core duplexes are found to correlate with the X-ray geometries of dangling nucleobases relative to the hydrogen bonds of the closing base pairs.</p>
19

Aspects of Antisense and Antigene Chemistry of Oligonucleotides Tethered to Intercalators

Ossipov, Dimitri January 2002 (has links)
Synthetic and physicochemical studies on appropriately functionalized ODN-conjugates have been performed to evaluate their abilities to act as antisense agents against RNA or as intramolecular DNA cross-linking agents. Intercalating aromatic systems [phenazine (Pnz), dipyridophenazine (DPPZ)] and metallointercalators such as Ru2+(phen)2(DPPZ) and Ru2+(tpy)(DPPZ)<b>L</b> [where <b>L</b> = chemically or photochemically labile ligand, phen = phenanthroline, tpy = terpyridine], which are covalently tethered to the oligo-deoxynucleotides (ODNs), have been chosen for this purpose. The ODN-conjugates were typically prepared by automated solid phase synthesis using phosphoramidite building blocks, or on solid supports, both functionalized with the chromophore groups. The photosensitive metal complex, Ru2+(tpy)(DPPZ)(CH3CN), has been incorporated by post-synthetic coupling to the amino-linker modified ODNs via an amide bond. The intercalating ability of the tethered chromophores gave enhanced stability of the duplexes and triplexes formed with ODN-conjugates and their complementary targets: DNA, RNA, or double-stranded DNA. The conjugation of DPPZ chromophore to ODN (at 3', 5' or at the middle) led us to incorporate Ru2+(phen)2(DPPZ) through the DPPZ ligand, for the first time. The corresponding (Ru2+-ODN)•DNA duplexes showed dramatic stabilization (ΔTm = 19.4 – 22.0ºC). The CD and DNase I footprinting experiments suggest that the stabilization is owing to metallointercalation by threading of the Ru2+(phen)2 moiety through the ODN•DNA duplex core, thus "stapling" the two helical strands from the minor to major groove. On the other hand, Ru2+(tpy)(DPPZ)(CH3CN)-ODN conjugates represent a new class of oligonucleotides containing the photoactivatible Ru2+ complexes, which can successfully crosslink to the complementary strand. The mechanism of cross-linking upon photoirradiation of [Ru2+(tpy)(DPPZ)(CH3CN)-ODN]•DNA involves in situ conversion to the reactive [Ru2+(tpy)(DPPZ)(H2O)-ODN]•DNA which are subsequently cross-linked through the G residue of the complementary DNA strand. All starting materials and products have been purified by HPLC and/or by PAGE and subsequently characterized by MALDI-TOF as well as ESI mass spectroscopy. Terminal conjugation of the planar Pnz and DPPZ groups through the flexible linkers were also shown to improve thermal stability of the ODN•RNA hybrid duplexes without alteration of the initial AB-type global helical structure as revealed from CD experiments. As a result, RNase H mediated cleavage of the RNA strand in the intercalator-tethered ODN•RNA duplexes was more efficient compared to the natural counterpart. The RNase H cleavage pattern was also found to be dependent on the chemical nature of the chromophore. It appeared that introduction of a tether at the 3'-end of the ODN can be most easily tolerated by the enzyme regardless of the nature of the appending chromophore. The tethered DPPZ group has also been shown to chelate Cu2+ and Fe3+, like phenanthroline group, followed by the formation of redox-active metal complex which cleaves the complementary DNA strand in a sequence-specific manner. This shows that the choice of appropriate ligand is useful to (i) attain improved intercalation giving Tm enhancement, and (ii) sequence-specifically inactivate target RNA or DNA molecules using multiple modes of chemistry (RNase H mediated cleavage, free-radical, oxidative pathways or photocross-linkage).
20

Studies on Nucleic Acids – Structure and Dynamics

Isaksson, Johan January 2005 (has links)
This thesis is based on six papers, Papers I-VI, focusing on the interplay between the stabilizing elements of nucleic acids self-assembly; hydrogen bonding, stacking and solvent effects. In Paper I we investigate how the substitution of the O4' for CH2 in the sugar moiety of adenosine (2'-deoxyaristeromycin) at the A6 position of the Dickerson-Drew dodecamer makes the two modified bases exist in a dynamic equilibrium between Hoogsteen and Watson-Crick base pairing in the NMR time scale. Paper II is a structural study of the incorporation of 1-(1',3'-O-anhydro-β-D-psicofuranosyl)thymine in the T7 position of the Dickerson-Drew dodecamer. NMR constrained molecular dynamics and hydration studies show the base-base distortions caused by the introduction of a North-type locked sugar in an otherwise B-type DNA•DNA duplex. Paper III shows that the stacking distortion caused by the 1-(1',3'-O-anhydro-β-D-psicofuranosyl)thymine building block perturbs the charge transfer similar to a DNA mismatch. Paper IV highlights how the sequence context affects the physico-chemical properties, monitored by the pKa of guanine itself as well as how the charge perturbation is experienced by the neighboring bases, in ssDNA and ssRNA. Paper V focuses on the differences between the structural equilibria of single-stranded ssDNA and ssRNA. Directional differences in single-stranded stacking between ssDNA and ssRNA are identified and provide a basis to explain directional differences in pKa modulation and dangling-end stabilization. In Paper VI the thermodynamic gains of dangling ends on DNA and RNA core duplexes are found to correlate with the X-ray geometries of dangling nucleobases relative to the hydrogen bonds of the closing base pairs.

Page generated in 0.0377 seconds