• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on Nucleic Acids – Structure and Dynamics

Isaksson, Johan January 2005 (has links)
<p>This thesis is based on six papers, Papers I-VI, focusing on the interplay between the stabilizing elements of nucleic acids self-assembly; hydrogen bonding, stacking and solvent effects. In Paper I we investigate how the substitution of the O4' for CH<sub>2</sub> in the sugar moiety of adenosine (2'-deoxyaristeromycin) at the A<sup>6</sup> position of the Dickerson-Drew dodecamer makes the two modified bases exist in a dynamic equilibrium between Hoogsteen and Watson-Crick base pairing in the NMR time scale. Paper II is a structural study of the incorporation of 1-(1',3'-<i>O</i>-anhydro-<i>β</i>-D-psicofuranosyl)thymine in the T<sup>7</sup> position of the Dickerson-Drew dodecamer. NMR constrained molecular dynamics and hydration studies show the base-base distortions caused by the introduction of a North-type locked sugar in an otherwise B-type DNA•DNA duplex. Paper III shows that the stacking distortion caused by the 1-(1',3'-<i>O</i>-anhydro-<i>β</i>-D-psicofuranosyl)thymine building block perturbs the charge transfer similar to a DNA mismatch. Paper IV highlights how the sequence context affects the physico-chemical properties, monitored by the p<i>K</i><i>a</i> of guanine itself as well as how the charge perturbation is experienced by the neighboring bases, in ssDNA and ssRNA. Paper V focuses on the differences between the structural equilibria of single-stranded ssDNA and ssRNA. Directional differences in single-stranded stacking between ssDNA and ssRNA are identified and provide a basis to explain directional differences in p<i>K</i><i>a</i> modulation and dangling-end stabilization. In Paper VI the thermodynamic gains of dangling ends on DNA and RNA core duplexes are found to correlate with the X-ray geometries of dangling nucleobases relative to the hydrogen bonds of the closing base pairs.</p>
2

Studies on Nucleic Acids – Structure and Dynamics

Isaksson, Johan January 2005 (has links)
This thesis is based on six papers, Papers I-VI, focusing on the interplay between the stabilizing elements of nucleic acids self-assembly; hydrogen bonding, stacking and solvent effects. In Paper I we investigate how the substitution of the O4' for CH2 in the sugar moiety of adenosine (2'-deoxyaristeromycin) at the A6 position of the Dickerson-Drew dodecamer makes the two modified bases exist in a dynamic equilibrium between Hoogsteen and Watson-Crick base pairing in the NMR time scale. Paper II is a structural study of the incorporation of 1-(1',3'-O-anhydro-β-D-psicofuranosyl)thymine in the T7 position of the Dickerson-Drew dodecamer. NMR constrained molecular dynamics and hydration studies show the base-base distortions caused by the introduction of a North-type locked sugar in an otherwise B-type DNA•DNA duplex. Paper III shows that the stacking distortion caused by the 1-(1',3'-O-anhydro-β-D-psicofuranosyl)thymine building block perturbs the charge transfer similar to a DNA mismatch. Paper IV highlights how the sequence context affects the physico-chemical properties, monitored by the pKa of guanine itself as well as how the charge perturbation is experienced by the neighboring bases, in ssDNA and ssRNA. Paper V focuses on the differences between the structural equilibria of single-stranded ssDNA and ssRNA. Directional differences in single-stranded stacking between ssDNA and ssRNA are identified and provide a basis to explain directional differences in pKa modulation and dangling-end stabilization. In Paper VI the thermodynamic gains of dangling ends on DNA and RNA core duplexes are found to correlate with the X-ray geometries of dangling nucleobases relative to the hydrogen bonds of the closing base pairs.

Page generated in 0.0577 seconds