• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 14
  • 14
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bipedal Walking for a Full Size Humanoid Robot Utilizing Sinusoidal Feet Trajectories and Its Energy Consumption

Han, Jea-Kweon 30 May 2012 (has links)
This research effort aims to develop a series of full-sized humanoid robots, and to research a simple but reliable bipedal walking method. Since the debut of Wabot from Waseda University in 1973, several full-sized humanoid robots have been developed around the world that can walk, and run. Although various humanoid robots have successfully demonstrated their capabilities, bipedal walking methods are still one of the main technical challenges that robotics researchers are attempting to solve. It is still challenging because most bipedal walking methods, including ZMP (Zero Moment Point) require not only fast sensor feedback, but also fast and precise control of actuators. For this reason, only a small number of research groups have the ability to create full-sized humanoid robots that can walk and run. However, if we consider this problem from a different standpoint, the development of a full-sized humanoid robot can be simplified as long as the bipedal walking method is easily formulated. Therefore, this research focuses on developing a simple but reliable bipedal walking method. It then presents the designs of two versions of a new class of super lightweight (less than 13 kg), full-sized (taller than 1.4 m) humanoid robots called CHARLI-L (Cognitive Humanoid Autonomous Robot with Learning Intelligence – Lightweight) and CHARLI-2. These robots have unique designs compared to other full- sized humanoid robots. CHARLI-L utilizes spring assisted parallel four-bar linkages with synchronized actuation to achieve the goals of lightweight and low cost. Based on the experience and lesions learned from CHARLI-L, CHARLI-2 uses gear train reduction mechanisms, instead of parallel four-bar linkages, to increase actuation torque at the joints while further reducing weight. Both robots successfully demonstrated untethered bipedal locomotion using an intuitive walking method with sinusoidal foot movement. This walking method is based on the ZMP method. Motion capture tests using six high speed infrared cameras validate the proposed bipedal walking method. Additionally, the total power and energy consumptions during walking are calculated from measured actuator currents. / Ph. D.
12

Development of an Omni-directional Gait Generator and a Stabilization Feedback Controller for Humanoid Robots

Song, Seungmoon 19 August 2010 (has links)
Bipedal locomotion in humanoid robots is a very challenging problem within the field of robot locomotion. In this thesis, we propose and demonstrate an omni-directional walking engine that achieves stable walking using feedback from an inertial measurement unit. Our walking engine generates gaits for which the zero moment point is on the center of the supporting foot. The mechanical structure of CHARLI-L, a humanoid robot used as our test platform in this thesis, is first introduced by describing the inverse kinematics of its legs. The principles of the omni-directional gait generator that creates walking motions and overcomes the robot's mechanical deficiencies is discussed. We develop and implement two kinds of feedback controllers; one is the gait feedback controller and the other is the joint feedback controller. Both feedback controllers use proportional-derivative of the angle of the pelvis from an inertial measurement unit. The results of the experiments are presented the efficacy of our proposed walking engine. / Master of Science
13

Design of a Pneumatic Artificial Muscle for Powered Lower Limb Prostheses

Murillo, Jaime 01 May 2013 (has links)
Ideal prostheses are defined as artificial limbs that would permit physically impaired individuals freedom of movement and independence rather than a life of disability and dependence. Current lower limb prostheses range from a single mechanical revolute joint to advanced microprocessor controlled mechanisms. Despite the advancement in technology and medicine, current lower limb prostheses are still lacking an actuation element, which prohibits patients from regaining their original mobility and improving their quality of life. This thesis aims to design and test a Pneumatic Artificial Muscle that would actuate lower limb prostheses. This would offer patients the ability to ascend and descend stairs as well as standing up from a sitting position. A comprehensive study of knee biomechanics is first accomplished to characterize the actuation requirement, and subsequently a Pneumatic Artificial Muscle design is proposed. A novel design of muscle end fixtures is presented which would allow the muscle to operate at a gage pressure surpassing 2.76 MPa (i.e. 400 psi) and yield a muscle force that is at least 3 times greater than that produced by any existing equivalent Pneumatic Artificial Muscle. Finally, the proposed Pneumatic Artificial Muscle is tested and validated to verify that it meets the size, weight, kinetic and kinematic requirements of human knee articulation.
14

Design of a Pneumatic Artificial Muscle for Powered Lower Limb Prostheses

Murillo, Jaime January 2013 (has links)
Ideal prostheses are defined as artificial limbs that would permit physically impaired individuals freedom of movement and independence rather than a life of disability and dependence. Current lower limb prostheses range from a single mechanical revolute joint to advanced microprocessor controlled mechanisms. Despite the advancement in technology and medicine, current lower limb prostheses are still lacking an actuation element, which prohibits patients from regaining their original mobility and improving their quality of life. This thesis aims to design and test a Pneumatic Artificial Muscle that would actuate lower limb prostheses. This would offer patients the ability to ascend and descend stairs as well as standing up from a sitting position. A comprehensive study of knee biomechanics is first accomplished to characterize the actuation requirement, and subsequently a Pneumatic Artificial Muscle design is proposed. A novel design of muscle end fixtures is presented which would allow the muscle to operate at a gage pressure surpassing 2.76 MPa (i.e. 400 psi) and yield a muscle force that is at least 3 times greater than that produced by any existing equivalent Pneumatic Artificial Muscle. Finally, the proposed Pneumatic Artificial Muscle is tested and validated to verify that it meets the size, weight, kinetic and kinematic requirements of human knee articulation.

Page generated in 0.0458 seconds