• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 10
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanics of bipedalism : an exploration of skeletal morphology and force plate analysis /

Forse, Erin. January 2007 (has links)
Thesis (B.S.)--University of Wisconsin -- La Crosse, 2007. / Also available online. Includes bibliographical references.
2

Multi-joint coordination underlies upright postural control

Hsu, Wei-Li. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisor: John P. Scholz, Dept. of Physical Therapy. Includes bibliographical references.
3

Locomotor energetics and limb length in hominid bipedality /

Kramer, Patricia Ann. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographic references (leaves [126]-138).
4

A gyroscopic approach to biped dynamic walking /

Wong, Chor-fai, Terence. January 1998 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1999. / Includes bibliographical references.
5

A model for morphological change in the hominid vestibular system in association with the rise of bipedalism

Knox, Craig A. January 2007 (has links)
This study re-examines the morphological data and conclusions of Spoor, Wood, and Zonneveld concerning the morphology of the vestibular apparatus in relation to locomotor behavior in hominids (1994). The pedal and labyrinthine morphology of early hominid taxa are functionally analyzed for classification as either obligate bipeds or habitual bipeds with primarily arboreal locomotion. The bony labyrinth is investigated since the anatomy of the semicircular canals of the vestibular auditory system can be determined in fossil crania through computed tomographical analysis. It is thought that a relationship exists between semicircular canal size and locomotor behavior. Functionally modern pedal morphology precedes modern vestibular morphology in the fossil record. Complete modern pedal morphology, however, appears concurrently with modern vestibular morphology first at Homo erectus. A comparison of the genes involved in the development of both pedal and labyrinthine morphology was undertaken. It was found that only fibroblast growth factor 8 (FgfS) and sonic hedgehog (Shh) are shared between these systems in the determination of positional information. It is found that the function of Fgf8 in otic induction and in limb bud formation is very different. It is also found that the function of Shh in vestibular and pedal morphogenesis is different. Therefore, it is unlikely for alteration in the function or in the expression of either gene to result in the observed differences in pedal and vestibular morphology between early hominid taxa: Australopithecus afarensis, Australopithecus africanus, Homo habilis; and Homo erectus. My examination of the data on the timing of changes in pedal morphology rejects Spoor, Wood, and Zonneveld's conclusion. Moreover I find no gene mutation which could account for simultaneous change in the shape of the semicircular canals and the proportions of the metatarsals and pedal phalanges. Instead, it is postulated that the change to modern vestibular morphology at Homo erectus is in response to a concurrent enlargement in cranial capacity. It is also postulated that persistence of panid vestibular morphology in the semicircular canals of hominid taxa: Australopithecus afarensis, Australopithecus africanus, and Homo habilis is a functionally neutral trait in regard to bipedal locomotor capability. / Department of Anthropology
6

Three-dimensional morphometrics of the proximal metatarsal articular surfaces of Gorilla, Pan, Hylobates, and shod and unshod humans

Proctor, Daniel Jason 01 July 2010 (has links)
There is debate about how fossil hominin pedal morphology relates to terrestrial habits. Were early hominins adapted to a bipedal lifestyle with a significant arboreal component, or were they more dedicated to a terrestrial lifestyle? The proximal articular surfaces of the metatarsals (MT) are examined in Gorilla, Pan, Hylobates, and habitually shod and unshod Homo using three-dimensional morphometrics. The results for MT 1 show three trends. OH 8 (Homo habilis) is indistinguishable from humans, specimens SKX 5017 and SK 1813 (Paranthropus robustus) are apelike, and all other fossil 1st metatarsals are intermediate in shape between humans and apes. The MT 2 and MT 3 analyses show that humans have a narrower surface that is expanded in the plantar aspect relative to apes. These features increase joint stability for the human longitudinal arch. The MT 2 fossils for Stw 573d (Little Foot) and OH 8 are humanlike. The MT 2 specimen of SKX 247 (possibly Paranthropus) is apelike, while all other MT 2 fossils are intermediate between humans and apes. In the MT 3 analysis, Stw 387, Stw 496, Stw 388, and OH 8 metatarsals are humanlike in shape, while Stw 435 and Stw 477 are intermediate between humans and apes. The MT 3 surface of Hylobates is markedly convex, suggesting that the midfoot break in gibbons extends to include this joint in addition to the MT 4 and MT 5 tarsometatarsal joints. The results of the MT 4 analysis show a highly convex surface in apes, with Hylobates extending further to the dorsal aspect of this metatarsal, with a greater range of motion at the midfoot break compared to the African apes. The MT 4 specimens of OH 8 and Stw 628 show greater morphological affiliation with humans. The MT 5 analysis shows that Pan and Hylobates have a medio-laterally extended and concave articular surface that is convex in the dorso-plantar plane. The two human groups are narrower and flatter in the medio-lateral plane, with a little dorso-plantar convexity. There is overlap in shape patterns between groups in the MT 5 analysis. Greatest similarity is between humans and Gorilla. The MT 5 fossil specimens tend to show closer affiliation to humans and Gorilla.
7

A mathematical and computational analysis of the biomechanics of walking theropod dinosaurs

Henderson, Donald Mackenzie January 1999 (has links)
No description available.
8

Ontogeny of bipedalism : pedal mechanics and trabecular bone morphology

Zeininger, Angel Diane 21 February 2014 (has links)
A unique pattern of pedal loading from heel-strike at touchdown to hallucal propulsion at toe-off is a distinct feature of mature human bipedalism, however, its first appearance in the fossil record is debated. The main goal of this dissertation is to identify anatomical correlates to a modern human heel-strike, rigid foot, and propulsive hallucal toe-off. First, a biomechanical analysis of toddler walking is used as a 'natural experiment' to investigate the influence of non heel-strike (NHS, n = 11) and immature heel-strike (IHS, n = 7) on the location of the center of pressure and orientation of the ground reaction force resultant in relation to specific foot bones during stance phase. With an expanded knowledge of foot bone loading in toddlers, a microarchitectural approach is used to test the influence of a heel-strike, rigid foot, and propulsive hallucal toe-off on trabecular bone fabric properties in an ontogenetic series of human and African ape (chimpanzee, bonobo, and gorilla) calcanei, tali, first metatarsal heads and hallucal distal phalanges. This dissertation presents the first ontogenetic analysis of pedal trabecular bone in primates. Heel-strike and toe-off are developmentally independent from one another. Although most toddlers lack a hallucal toe-off, NHS and IHS apply equally high propulsive forces when the entire width of their forefoot is in contact with the ground. Biomechanical and fossil evidence suggest that a generalized active propulsion may have preceded the evolution of a propulsive hallucal toe-off. Although pedal trabecular fabric properties are more complex than predicted, trabecular correlates to heel-strike and hallucal toe-off are identified within adult human foot bones. Compared to toddlers and African apes, adult humans have a unique combination of relatively thick trabecular struts and an anteroplantar to posterodorsal primary trabecular orientation in the plantar aspect of the calcaneal tuber. In the calcaneal tendon volume of interest, adult humans have a unique anteroplantar to posterodorsal primary trabecular orientation associated with a propulsive hallucal toe-off. This dissertation provides the comparative context necessary to begin assessing the evolution and developmental timing of foot function and specific bipedal gait events in juvenile and adult fossil hominins. / text
9

Fast biped walking with a neuronal controller and physical computation

Geng, Tao January 2007 (has links)
Biped walking remains a difficult problem and robot models can greatly {facilitate} our understanding of the underlying biomechanical principles as well as their neuronal control. The goal of this study is to specifically demonstrate that stable biped walking can be achieved by combining the physical properties of the walking robot with a small, reflex-based neuronal network, which is governed mainly by local sensor signals. This study shows that human-like gaits emerge without {specific} position or trajectory control and that the walker is able to compensate small disturbances through its own dynamical properties. The reflexive controller used here has the following characteristics, which are different from earlier approaches: (1) Control is mainly local. Hence, it uses only two signals (AEA=Anterior Extreme Angle and GC=Ground Contact) which operate at the inter-joint level. All other signals operate only at single joints. (2) Neither position control nor trajectory tracking control is used. Instead, the approximate nature of the local reflexes on each joint allows the robot mechanics itself (e.g., its passive dynamics) to contribute substantially to the overall gait trajectory computation. (3) The motor control scheme used in the local reflexes of our robot is more straightforward and has more biological plausibility than that of other robots, because the outputs of the motorneurons in our reflexive controller are directly driving the motors of the joints, rather than working as references for position or velocity control. As a consequence, the neural controller and the robot mechanics are closely coupled as a neuro-mechanical system and this study emphasises that dynamically stable biped walking gaits emerge from the coupling between neural computation and physical computation. This is demonstrated by different walking experiments using two real robot as well as by a Poincar\' map analysis applied on a model of the robot in order to assess its stability. In addition, this neuronal control structure allows the use of a policy gradient reinforcement learning algorithm to tune the parameters of the neurons in real-time, during walking. This way the robot can reach a record-breaking walking speed of 3.5 leg-lengths per second after only a few minutes of online learning, which is even comparable to the fastest relative speed of human walking.
10

A gyroscopic approach to biped dynamic walking

黃楚輝。, Wong, Chor-fai, Terence. January 1998 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy

Page generated in 0.0504 seconds