Spelling suggestions: "subject:"1diphenyl compounds"" "subject:"2,5diphenyl compounds""
31 |
Biphenyl complexes of zirconium and their utility in the synthesis of polycyclic aromatic hydrocarbonsHilton, Cameron L. January 2008 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2008. / "August, 2008." Includes bibliographical references. Online version available on the World Wide Web.
|
32 |
The effect of malathion, polychlorinated biphenyls and iron on growing chicksRehfeld, Betty Mae, January 1971 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1971. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
33 |
Kinetics of the Cope rearrangement of 3,4-diphenylhexa-1,5-dieneBerg, Harlan Albert Jerome 01 January 1972 (has links)
Kinetics investigations of the thermal Cope rearrangement of meso-and d1-3,4-diphenylhexa-1,5-dienes were undertaken in order to gain information about the transition states for these reactions by determining the appropriate enthalpies and entropies of activation. Of particular interest were the activation parameters for the meso compounds' rearrangement as it represents the only known example in which both four-and six-centered transition states are of comparable energy.
Kinetics of the dl isomers' rearrangement in the temperature range 90-110⁰were determined using 5 X 10¯⁵M solutions of the olefin in heptane contained within sealed Pyrex ampules. Extents of reaction were determined from UV absorbance measurements at 256 nm. Product instability, becoming pronounced after 85-90% reaction, was observed. Two rate constants were calculated covering 0-85% and 0-98% reaction respectively, from each set of data. Evaluations of enthalpies of activation from the two sets of rate constants gave, respectively,
23.8 and 23.9 kcal/mole, indicating that inclusion of the increasingly erratic kinetics data collected after 85% reaction had little effect upon this activation parameter. The corresponding entropies of activation at 100⁰were -12.9 and -12.6 eu. Both activation parameters are consistent with those for other Cope rearrangements indicating that the thermal isomerization of dl-3,4-diphenylhexa-1,5-diene in the temperature range 90-110⁰is normal in every respect.
Kinetics studies of the more interesting meso-diene were precluded by the failure to locate means of controlling product decomposition, which would be expected to become more severe at the higher temperature required (140-160⁰).
Additionally, alumina-catalyzed isomerizations first observed accidently for the d1-diene, and subsequently verified for both meso--and d1-olefins, were examined. In contact with 100 times its weight of very active alumina at room temperature the d1 isomer was found to undergo conversion in the extent of 40% during a two-hour period to trans, trans-1,6-diphenylhexa-1,5-diene.meso--3,4-Diphenylhexa-1 ,5-diene underwent structural reorganization more slowly; after 70 hours over alumina a 15% conversion to a 9:1 mixture of cis-trans and trans,trans-1,6-diphenylhexa-1,5-dienes was noted. The stereo specificities observed for these unusual catalyzed rearrangements parallel those of their thermally-induced counterparts. Modifications in the syntheses of meso- and d1-1, 6--dibromo-3,4-diphenylhexanes, and meso--and dl-3,4-diphenylhexa-1,5-dienes, are also presented.
|
34 |
Dipole Moments of Diphenyl Compounds with Conjugated Double BondsSpalding, Dan W. 01 1900 (has links)
This thesis is a continuation of a study of molecular moments begun by Joseph T. Fielder. In his paper he discussed the theory and the equipment necessary for such a study. It is the purpose of this paper to set forth modifications of his equipment, to present data obtained with this modified equipment, and to interpret this data.
|
35 |
THE SOLUBILITY OF HYDROPHOBIC POLLUTANTS IN WATER-COSOLVENT MIXTURESMorris, Kenneth Robert, 1951- January 1986 (has links)
No description available.
|
36 |
DDT residue degradation by soil bacteriaMcDougal, Rebecca, n/a January 2007 (has links)
1,1,1-trichloro-2,2-bis(4-chlorophenyl)-ethane (DDT) residues (DDTr) are widespread and persistent environmental contaminants, and have been classed as priority pollutants by the United Nations Environment Programme (UNEP). DDTr are potent endocrine disrupting molecules, and have been associated with reproductive abnormalities in juvenile alligators and rats. Microorganisms that metabolise DDTr both aerobically and anaerobically have been isolated and characterised. Bacteria that degrade DDTr aerobically typically utilise a dioxygenase to initiate degradative reactions through ring-hydroxylation, and convert DDTr to 4-chlorobenzoate without further degradation. Terrabacter sp. strain DDE-1 was isolated from DDTr-contaminated soil from Canterbury, New Zealand, and aerobically degrades 1,1-dichloro-2,2-bis-(4-chlorophenyl)-ethylene (DDE) to 4-chlorobenzoate, when grown in the presence of biphenyl (BP). The intermediates of degradation were inferred to be the end products of dioxygenase activity. Sequencing of a large linear plasmid, pBPH-1, from strain DDE-1 identified a cluster of genes with high levels of sequence similarity to BP-degradation genes from Rhodococcus spp. and Pseudomonas spp. This plasmid is lost at high frequency producing the plasmid-cured strain MJ-2, which has lost the ability to degrade BP or DDE. The aim of this study was to confirm that DDE-degradation in strain DDE-1 is encoded by the bph operon located on pBPH-1. No genetic systems to study gene function in either DDE-1 or MJ-2 could be developed using an array of broad-host range vectors. However, heterologous expression of the bph genes in Rhodococcus erythropolis strain TA422 was successful, with the recombinant strain TA425, obtaining the ability to utilise BP and DDE as a sole source of carbon and energy. DDE-1 was shown to convert indole to indigo, but MJ-2 could not, indicating that the biphenyl dioxygenase located on pBPH-1 is responsible for this activity. The bph genes from strain DDE-1 also conferred the ability to produce indigo from indole on strain TA425, confirming successful expression of the functional biphenyl dioxygenase in this strain. Despite several attempts to show quantitative degradation in strain TA425 using gas chromatography, the results were inconclusive Further analysis is needed to provide unequivocal evidence of DDE-degradation by strain TA425. Attempts to express the bph genes in rhizosphere-colonising bacteria, such a Rhizobium spp. or Pseudomonas spp., were unsuccessful, as evidenced by the inability to produce indigo, hence the lack of a functional biphenyl dioxygenase. However, RT-PCR did indeed indicate that P. aeruginosa strain Fin1 produced a bphA1 transcript, indicating that an error is occurring post-transcriptionally in these strains, to prevent production of the functional enzyme.
New Zealand has recently been shown to contain hotspots of DDTr-contamination. The second aim of this study was to determine the prevalence of DDTr-degrading bacteria and to gain insight into the types of bacteria that inhabit sites contaminated with DDTr. To investigate this, culture-dependent and culture-independent techniques were employed. Enrichment for DDTr-degrading bacteria yielded species of Rhodococcus and Ralstonia using DDTr-overlayer plate assays. The polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were used to amplify and analyse the 16S rDNA and 16S rRNA for the identification of dominant and active bacteria in soil samples. The results of this analysis identified bacteria such as Williamsia spp. and Gordonia spp. that degrade other types of pollutants. This analysis did not identify a predominance of Rhodococcus or Ralstonia spp., or other bacteria that have been shown to degrade DDTr. To identify ecologically relevant members of the bacterial communities in DDTr-contaminated soils, and potentially important metabolic pathways, identification of ring-hydroxylating dioxygenase (RHD) genes was performed. PCR and restriction fragment length polymorphism (RFLP) analysis were employed together with phylogenetic analyses. The results showed that the RHD genes identified, clustered separately to those genes previously characterised from cultivated bacteria. Among these genes, one phylogenetic group was most closely related to the dioxygenase genes from Ralstonia eutropha H850, which is potent PCB-degrading bacterium that possesses a dioxygenase with a wide substrate range for many types of heavily chlorinated, PCB congeners. The identification of a predominance of genes with similarity to phenyl-propionate dioxygenases has been not been recognised previously in soil studies.
|
37 |
Time-resolved resonance Raman and density functional theory investigation of the T1 triplet states and radical cations of substituted biphenyl compoundsLee, Cheong-wan. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 81-86).
|
38 |
Time-resolved resonance Raman and density functional theory investigation of the T1 triplet states and radical cations ofsubstituted biphenyl compounds李昌運, Lee, Cheong-wan. January 2001 (has links)
published_or_final_version / Chemistry / Master / Master of Philosophy
|
39 |
Environmental chemistry of the chlorobiphenyls in the Milwaukee RiverVeith, Gilman D. January 1970 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. Description based on print version record. Includes bibliographical references (leaves 173-180).
|
40 |
Bioremediation of polychlorinated biphenyls (PCBs) on contaminated soils : a case study of Rietvlei Farm Borehole No. 11, Limpopo Province, South AfricaSengani, David January 2015 (has links)
MENVM / Department of Ecology and Resource Management / Polychlorinated biphenyls (PCBs) are worldwide environmental pollutants which contaminate the environment through careless disposal practices and accidental spills or leakages from electrical transformers. These organic compounds are lipophilic chemicals soluble in fats, slightly soluble in water and readily bioaccumulated in the fatty tissues of fish, birds, animals and humans. The main objective of this study was to isolate and identify PCB degrading bacteria from PCB contaminated soils and test them for their degradation ability of PCBs in natural habitat conditions. Three bacteria species which comprise of Gram negative and Gram positive microorganisms were isolated and identified through biochemical tests, catalase tests, oxidase tests and morphological study and included Burkholderia cepacia, Pasteurella pneumotropica and Enterococcus faecalis. The results indicated that, there was an overall decrease of PCB concentration level and the readings ranged between -1.51 and -1.79 respectively for all the microorganisms. Enterococcus faecalis remove as much as 32% of PCBs in the contaminated soil samples. Whereas Pasteurella pneumotropica could remove 24% of PCBs, Burkholderia cepacia 21% of PCBs and the mixed culture removed 23%. Data showed that the 3 bacterial strains could tolerate high concentration of PCBs. The results provided the evidence that naturally occurring bacteria in soil contaminated with PCBs have the potential to degrade PCBs. Statistical analysis showed that there was a significant positive correlation between bacteria growth and treatment with a coefficient of (r) =0.1459 and p value <0.001.
|
Page generated in 0.0628 seconds