Spelling suggestions: "subject:"biphenyls"" "subject:"diphenyls""
111 |
Metodologia analítica para análise de PCBs em fígado de peixe do Rio Paraíba do Sul / Analytical methodology for analyses of PCBs in liver of fish of the river Paraíba do Sul, SPJosé Carlos Pires Penteado 02 May 2000 (has links)
Os bifenilos policlorados (PCBs) são compostos organoclorados que apresentam 209 congêneres sendo que alguns deles são muito tóxicos. Foram produzidos por mais de 30 anos sendo utilizados principalmente no setor eletroeletrônico. Devido à legislação brasileira não prever substituição de equipamentos, ainda em funcionamento, que contenham PCBs estes podem tomar-se fontes potenciais de contaminação no ambiente. Neste aspecto a região do Vale do Paraiba, por ter um parque industrial diversificado (químico, eletrônico e mecânico) iniciado na década de 50, pode apresentar essas fontes. O rio Paraíba do Sul é o principal recurso hídrico sendo utilizado para captação de água para abastecimento e também como receptor de efluentes industriais e esgotos domésticos. Nele também é praticada a pesca de subsistência pela população ribeirinha. Devido às características de bioconcentração no fígado de peixe por organoclorados, decidiu-se utilizá-lo como bioindicador. Assim pode ser verificada a presença de PCBs na região avaliando-se os níveis de contaminação que podem colocar em risco as populações ribeirinhas. Na metodologia analítica proposta, foram encontrados de 48 a 159 ng/g de PCBs totais para a traíra e 12 a 34 ng/g de PCBs totais para o mandi. A recuperação alcançada foi na faixa de 50 a 100%. Os valores do limite de detecção para os 13 congêneres estudados se encontraram na faixa de 1 a 3 ng/g. Os congêneres mais genotóxicos (PCB 77 e 126) foram encontrados principalmente na traira com 20 ± 9 ng/g (PCB 77) e 21 ± 3 ng/g (PCB126), enquanto que o mandi apresentou principalmente o PCB 77 com 8 ± 2 ng/g. Estas avaliações são preliminares e necessitam de maiores estudos para se determinar a extensão do grau de contaminação e as possíveis fontes de contaminação por estes compostos. / The chlorinated biphenyls are organochlorinated compound with around 209 congeners some them are very toxic. They were produced during 30 years and used mainly in the eletronic equipment (transformers and capacitors). Brazilian legislation don\'t obligate the substitution of equipaments containing PCBs that are still being used. So this could be a signifincat source of environrnent contamination. The industries have settled the Paraíba Valley since 50\'s that can represent the major source of PCBs. The South Paraíba river main hidric source that has been used caption for water suplly and subsistent fishing. It receives also industrial efluents and domestic sewer. In spite of bioconcentration characteristics of organochIorinated in fishes\'liver, this organ was decided to be used as bioindicator. PCB\' s level can be avaliated indiretly, analysing the exposure of some species of fishes, and arevall contamination around the fish population. From this proposed analytical method total PCBs from traira here found nearly 32 to 143 ng/g in liver and 8 to 26 ng/g in mandi\'s liver. The aproached recuperation were about 50 to 100%, the limit detection for these 13 congeners were around 1 to 3ng/g. The most genotoxic congeners were found in traira (PCB 77 20 ± 9ng/g and PCB 12621 ± 3ng/g) and other hand, it was only in mandi PCB 77 8 ± 2ng/g. These evalutions are preliminar and necessites further studies to determine the extension of contarnination and the possibly source these compound\' s contamination.
|
112 |
Avaliação da toxicidade dos congêneres BDE-47 e BDE-99 de éter de bifenilas polibromadas (PBDEs) utilizando ensaios mitocondriais / Evaluation of the toxicity of BDE-47 and BDE-99 congeners of polybrominated biphenyl ether (PBDE) using mitochondrial assaysMurilo Pazin Silva 24 January 2014 (has links)
Os éteres de bifenilas polibromados (PBDEs) são largamente usados como retardadores de chama e têm sido detectados no sangue humano, tecido adiposo e leite materno devido às suas propriedades físico-químicas e bioacumuladoras e à sua elevada persistência no meio ambiente. Muitos estudos têm relatado toxicidade hepática relacionada à exposição aos PBDEs. Como efeitos citotóxicos são frequentemente associados à disfunção mitocondrial,no presente estudo, investigamos a toxicidade do BDE-47 em mitocôndrias isoladas de fígado de rato. Nos seguintes parâmetros: potencial de membrana mitocondrial, consumo de oxigênio, interação com a membrana mitocondrial, liberação de cálcio, inchamento mitocondrial e os níveis de ATP da suspensão mitocondrial com a finalidade de observar a capacidade do composto em interferir com a bioenergética da organela. Avaliou-se ainda a formação de espécies reativas de oxigênio (ROS), dos níveis de GSH/GSSG, níveis mitocondriais de grupos sulfidrila de proteínas e níveis mitocondriais de NAD(P)H com o intuito de analisar o estado redox mitocondrial. Os congêneres BDE-47 e BDE-99 foram avaliados em concentrações que variaram entre 0,1 e 50 ?mol/L. Os dois congêneres de PBDEsapresentaram toxicidade mitocondrial afetando todos os parâmetros que avaliam a bioenergética mitocondrial culminandoum uma depleção do ATP. Por outro lado, nos ensaios de avaliação do estresse oxidativo os PBDEs estudados não demonstraram qualquer efeito, no entanto, afetaram a cadeia respiratória mitocondrial, o que normalmente reflete em um acúmulo de espécies reativas de oxigênio. Estes resultados são explicados pelo mecanismo de ação destes compostos como retardante de chama, pois durante a combustão os retardantes de chama bromados realizam a neutralização de radicais livres (OHo e Ho). Conclui-se assim que os PBDEs podem levar à disfunção bioenergética e assim induzir a morte celular pela diminuição do ATP. Observou-se ainda que BDE-47 apresentou maior toxicidade do que o BDE-99 sobre os parâmetros estudados. / Polybrominated biphenyls ethers (PBDE) , widely used as flame retardants, have been detected in human blood, adipose tissue and breast milk due to their physicochemical and high bioaccumulative properties and environmental persistence. Many studies have reported liver toxicity related to exposure to PBDEs. As cytotoxic effects are often associated with mitochondrial dysfunction,in the present study, we investigated the toxicity of the BDE-47 and BDE-99 on isolated rat liver mitochondria. Assessing mitochondrial membrane potential, oxygen consumption, interaction with the mitochondrial membrane, calcium release, mitochondrial swelling and ATP levels of the mitochondrial suspension in order to observe the ability of the compounds to interfere with the bioenergetic organelle, and the formation of reactive oxygen species (ROS), GSH/GSSG levels, mitochondrial sulfhydryl groups and levels of mitochondrial NAD(P)H in order to analyze mitochondrial redox state. The congeners BDE-47 and BDE -99 were evaluated at concentrations ranging between 0.1 and 50 ?mol/L. Both PBDEs congeners showed mitochondrial toxicity affecting all parameters that assess mitochondrial bioenergetics and culminating with ATP depletion. On the other hand, no effect was observed in tests assessing oxidative stress, although they were able to inhibit the mitochondrial respiratory chain, which is usually reflected in an accumulation of reactive oxygen species. These results are explained by the mechanism of action of this compounds as flame retardants, because during the combustion brominated flame retardants perform the neutralization of free radicals (OHo and Ho). It follows that PBDEs can lead to mitochondrial dysfunction and thus induce bioenergetic cell death. It was also observed that The BDE-47 showed higher toxicity than BDE-99 in the studied model
|
113 |
Dechlorination of PCB77 using Fe/Pd bimetallic nanoparticles immobilized on microfiltration membranesNdlwana, Lwazi 01 July 2014 (has links)
M.Sc. (Nanoscience) / Polychlorinated biphenyls (PCBs) are endocrine disrupting compounds (EDCs) and are harmful to humans and the environment. These PCBs are grouped under chlorinated organic compounds (COCs). The PCBs find their way to the environment through human activity such as industrialization and farming. Such activity produces wastes and runoffs that eventually end up in the water we use for drinking, farming and sanitation. It has then become necessary for researchers to find viable methods to remove these compounds from the environment. This is because current water treatment methods are not effective in the removal of the PCBs from water. The stages in the conventional treatment methods may include sand filtration, advanced oxidative processes and coagulation among others. These methods need to be energetically eco-friendly to drive the PCB dechlorination processes. Researchers have used a variety of metallic nanoparticles including bimetallic nanoparticles for the removal of COCs from water. However, nanoparticles tend to agglomerate when not supported - leading to a decrease in their activity. Hence it has become necessary to stabilize or immobilize these nanoparticles on suitable support materials, such as, polymer solutions or solid substrates. Solid substrates including metal oxides, carbon and membranes, are currently being explored. Poly(vinylidene difluoride) microfiltration membranes are especially suitable for this function given the high porosity, chemical inertness and other outstanding physical properties. In this work, the objective was to modify commercially hydrophilized poly(vinylidine)difluoride (PVDF) membranes with poly(ethylene glycol) (PEG). PEG is a bidentate polymer with two –OH groups found on either side of the molecule. The -OH groups allows PEG binding to the PVDF polymer backbone and hence high ability to capture or chelate the metal ions followed by their reduction. Nano-zerovalent metal nanoparticles were formed from these metal ions and chelated into the PEG grafted PVDF membrane to give the composite PVDF-PEG-Fe0. Post addition of the secondary metal was then followed by the introduction of the precomposite to a Pd solution to give the final catalytic membrane (PVDF-PEG-Fe0/Pd0). The use of PEG in this system allows for an even dispersion of the nanoparticles in the composite. The resulting nanocomposite membrane was used for the dechlorination of a polychlorinated biphenyl (PCB 77). Attenuated total reflection- Fourier transform infra red spectroscopy (ATR-FTIR) showed that PEG was successfully grafted onto the PVDF backbone. Optical contact angle measurements (OCA) were taken to determine the change in hydrophilicity of the membrane upon modification. X-ray diffraction spectroscopy (XRD) proved that the Pd and Fe nanoparticles immobilized on the system were indeed zerovalent. Scanning electron microscopy (SEM) images and contact angle measurements suggested a less porous membrane and slightly decreased hydrophilicity after modification. On the SEM micrographs the nanoparticles were observed to be quite evenly distributed in the membrane. Transmission electron microscopy (TEM) showed that the nanoparticles were in the range 20-30 nm in diameter, confirming the particle size values as determined by SEM. For the preliminary dechlorination studies done under ambient conditions, two dimensional column gas chromatography- time of flight- mass spectrometry (GCxGC-TOF-MS) results showed a complete dechlorination of PCB 77. A comparative study of the bare PVDF and catalytic membranes showed a slight difference in adsorption of the total PCB 77 concentrations. The catalytic membrane maintained its activity towards the dechlorination of PCB 77 after multiple regeneration cycles.
|
114 |
Accumulation and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.Chu, Wing Kei 01 January 2004 (has links)
No description available.
|
115 |
Toxicological and therapeutic implications of interactions between polychlorinated biphenyl sulfates and human transthyretinGrimm, Fabian Alexander 01 May 2014 (has links)
In recent years, lower-chlorinated, airborne congeners of polychlorinated biphenyls (PCBs) have evolved as an emerging class of potentially hazardous environmental contaminants. Previous work has demonstrated that sulfation is a major metabolic pathway for these PCBs in vitro and in vivo; however, their metabolic fate and toxicities have not been explored. Hypothyroxinemia is among the most prevalent adverse health effects associated with PCB exposure in human populations and is an assumed cause of a variety of neurodevelopmental effects observed in infants following prenatal PCB exposure. The displacement of L-thyroxine (T4) from binding sites on transthyretin (TTR), a major T4 transport protein and trans-placental carrier of thyroid hormones, is thought to be a significant contributing factor in PCB-induced hypothyroxinemia. Structural similarities between sulfated metabolites of PCBs and T4 led to the central hypothesis that PCB sulfates are bioactive metabolites that exhibit high affinity binding to T4 binding sites on human TTR. An examination of the ability of six lower-chlorinated PCB sulfates to bind to human TTR in vitro, as well as subsequent computational modeling, revealed that these compounds interact with the high-affinity binding site in a non-covalent manner and with affinities comparable to T4. Corroborating evidence for the binding of PCB sulfates stems from their ability to inhibit the formation of TTR amyloid fibrils through stabilization of the protein's native conformation. Fibrillar TTR aggregates are the cause of amyloidoses like senile systemic amyloidosis, familial amyloid polyneuropathy and familial amyloid cardiomyopathy. All PCB sulfates examined were effective inhibitors of TTR fibrillogenesis with equal or higher efficiencies than some of the best previously described inhibitors. In vivo exposure of male Sprague-Dawley rats to a model PCB sulfate, 4-PCB 11 sulfate, resulted in rapid and widespread distribution of the metabolite to various organs, including the brain. Consequently, there is a strong indication for a potential role of PCB sulfates in thyroid disruption and inter-tissue transport of PCBs, and the binding of PCB sulfates to TTR may also provide structural information for improved design of anti-amyloid therapeutics. To date there are no analytical procedures for the quantification of PCB sulfates available, and exposure levels in human populations remain unknown. This study provides, for the first time, evidence that PCB sulfates, if present in human serum samples, are not extracted by current standard protocols for the analysis of PCBs and their metabolites. Consequently, PCB sulfates may have been overlooked in the past decades resulting in potential underestimation of total PCB exposure levels in exposed populations. Based on this finding, an efficient approach for the quantitative extraction of PCB sulfates from a variety of biological samples was developed. This procedure, coupled with quantitative mass spectrometry, has been validated for the future screening of human serum samples, and it was successfully applied to determine the tissue distribution and elimination profile of 4-PCB 11 sulfate in male Sprague-Dawley rats.
|
116 |
Mechanismus mikrobiální biodegradace polychlorovaných bifenylů / Mechanism of microbial biodegradation of polychlorinated biphenylsŠrédlová, Kamila January 2021 (has links)
Polychlorinated biphenyls (PCBs) are chlorinated organic compounds, which belong to persistent organic pollutants and exhibit various modes of toxic action, including mutagenicity, carcinogenicity, and endocrine disruption. PCBs were manufactured during the 20th century in many countries and extensively used due to their advantageous physicochemical properties. PCBs mostly served as insulating liquids in electrical equipment; however, they were also utilized in many open applications. Despite the worldwide ban on PCB manufacture imposed at the end of the 20th century, the contamination of the environment persists to this day as a result of their recalcitrance. Moreover, PCBs are still being inadvertently produced during many industrial activities. Because of their stability, the breakdown of PCBs in nature is extremely slow. This dissertation thesis focuses on the study of PCB biodegradation by ligninolytic fungi. This group of microorganisms belongs to the most promising, especially in regard to the degradation of organic pollutants. The biodegradation mechanism of PCBs was studied in vitro, including the identification of degradation intermediates. Laccase, an enzyme expressed by the oyster mushroom (strain Pleurotus ostreatus 3004), was able to degrade hydroxylated PCBs. In addition, chlorinated...
|
117 |
APPLICATION OF THE TENAX TECHNIQUE TO ASSESS BIOACCESSIBILITY OF SEDIMENT-ASSOCIATED POLYCHLORINATED BIPHENYLSSinche Chele, Federico Leonardo 01 May 2018 (has links) (PDF)
Sediments can act as both reservoir and source of legacy organic contaminants such as polychlorinated biphenyls (PCBs). Due to their chemical stability and ubiquity, these contaminants remain as model class of compounds in the field of sediment contamination. Whole sediment and organism concentrations have been often used as exposure metrics for ecological risk assessments. However, whole sediment concentrations often overestimate the potential for exposure to contaminants; while organism concentrations based on bioassay provide a better estimate of exposure, bioassays can also be labor intense, time consuming and expensive. Alternatively, accessiblity-based techniques such as Tenax extractions have been gaining ground, in the last few decades, as a rapid, reliable, and cost-effective approach to estimate exposure to organic contaminants from sediments. Tenax extractions measure the bioaccessible fraction of the contaminant that desorbes from sediment. Despite the simplicity, accuracy and robustness of the Tenax technique to estimate bioaccessibility of organic contaminants, there are still some remaining questions regarding the methodological standardization, and the applicability of the technique in sediments containing diverse carbonaceous sorbents associated adsorption/desorption of the contaminant. Therefore, the chapters of this dissertation were designed to address these questions. To this end, PCBs were chosen as a model compound class to represent a wide range of physicochemical properties of persistent organic contaminants, and because these compounds remain a worldwide legacy contamination problem. The dissertation goals were to: determine the best operational conditions for Tenax technique (Chapter 2); monitor the changes in bioaccessibility of field-collected sediments with different holding time conditions (Chapter 3); examine the effects of the type and quantity of organic carbon on bioaccessibility (Chapter 4); and evaluate the applicability of the Tenax technique to assess remediation success in contaminated marine sediments (Chapter 5). To address the methodological standardization of the Tenax technique, the operational parameters of solvent extract volume, Tenax sorption rate from water, and Tenax:OC (Tenax:Organic Carbon) ratios were investigated in Chapter 2. The highest efficiency of extraction of sorbed PCBs from Tenax resulted from using a 10 mL per each solvent wash during Tenax extraction procedure. For the Tenax sorption, it was found that 0.01 g of Tenax cleared PCB in 40 mL of water in 30 min, thus it would clear the water 48 times in 24 h. When this is extrapolated to the 0.5 of Tenax, typical amount used, it was found that the amount should clear the typical volume of water used on Tenax extraction about 2400 times. This represents unequivocal evidence that the Tenax resin would remove PCBs dissolved in the liquid phase (e.g., overlying or interstitial water) present in the sediment sample and be limited only by compound desorption and not by the Tenax sorption capacity. The results examining the impact of the relationship between the amount of Tenax required and the amount of organic carbon in the sediment extraction indicated that a minimum of 5:1 Tenax:OC ratio be used to conduct Tenax extractions. This will reduce (eliminate) the possibility of re-adsorption by the native OC in the sediment in competition with the Tenax. After ascertaining the best operational conditions for Tenax extractions, two additional methodological uncertainties, the effect of storage time after collection and the preservation method associated with the handling of collected sediment samples were investigated in Chapter 3. The effect of holding time and the preservation method on PCB concentrations from field-collected sediments was examined for a period of 196 d. All samples were held at 4 ºC in the dark and several holding times were chosen. The parameters to track the changes in PCB concentration in two sediments used three exposure metrics: exhaustive solvent extraction, tissue concentrations and Tenax extractions (Chapter 3). The results showed that the total exhaustive concentrations representing the whole sediment concentrations did not significantly change (ANOVA, p> 0.05) in either sediment over the course of 196 d. Similar results were also found for the total Tenax concentrations that represented the bioaccessible sediment concentrations, and for the total organism tissue concentrations representing exposure. The likely equilibrium of PCB in the sediment, their chemical stability of PCB and slow degradation can be underlined as the main factors leading to these results. The long time that legacy contaminants such as PCBs have been in contact with contaminated sites (e.g., Superfund sites) might have contributed to an equilibrium to be reached between the sediment particles and PCB molecules. The significance of this chapter is that sediments collected from PCB-contaminated sites can be stored longer than the 14 d as recommended by current standard protocols without disturbing the measures of bioavailability. The role of organic carbon composition within sediment on contaminant sorption was also investigated to ascertain the effects of type and quantity of OC from different origins on the bioaccessibility of PCBs in contaminated sediments (Chapter 4). Changes in PCB bioaccessibility in sediments amended at either 3 or 6% by dry weight with black carbon (BC), humic acid (HA) or sawdust (SD), showed that the lowest and highest PCB bioaccessibilities were observed in the BC and SD amendments, respectively. Specifically, the total amount of PCBs desorbed ranges from 3 to 27% for BC amendments, 12 to 55% for HA amendments and 16 to 80% for SD amendments. The results showed the influence of OC quantity on bioaccessibility having a much slower desorption of PCBs in 6% amendments compared to 3% amendments, and this finding was most evident in HA and BC amendments. The results also showed that the Tenax technique can be applied to tract the variation in type of carbon and quantity of OC in contaminated sediment to estimate exposure. Finally, the applicability of the Tenax technique as tool to assess the remediation success of PCB-contaminated marine sediments upon AC amendment at either 4.3 or 0.026% AC by dw was examined in Chapter 5. The results showed that bioaccessibility of PCBs was greatly reduced in sediment amended at the higher AC dose (4.3%); while, reduction was also observed even in the sediment amended at 0.026% AC. Furthermore, the results revealed that Tenax concentrations reflected the PCB reduction among AC amended sediments in the same direction as the PCB reduction in the organism bioaccumulation. Overall, this dissertation provides further evidence that the Tenax technique is a rapid, reliable, and cost-effective tool for estimating exposure to recalcitrant organic contaminants such as PCBs from contaminated sites. The applicability of the technique to estimate bioaccessible compound from both freshwater and marine aquatic sediments underline the robustness of the technique to widen its use among risk ecological assessor and researchers.
|
118 |
Determinants of the short term dynamics of PCB uptake by the planktonRicher, Guylaine January 1991 (has links)
No description available.
|
119 |
Laboratory study of solvent extraction of polychlorinated biphenyls in soilValentin, Melissa McShea. January 2000 (has links)
No description available.
|
120 |
A laboratory study on the development and testing of a bioaugmentation system for contaminated soils /Mehmannavaz, Reza. January 1999 (has links)
No description available.
|
Page generated in 0.0429 seconds