• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative Genomics of the Major Histocompatibility Complex in Amniotes

Godinez, Ricardo January 2012 (has links)
The major histocompatibility complex region (MHC) is a multi gene family present in all jawed vertebrates, with a fundamental role in vertebrate immunity. More than two decades of studies have resulted in the characterization of over a dozen MHC regions, and models of evolution explaining that the MHC has gradually increased in size and gene content since its origins without addressing their genomic context or the environmental selective forces. Furthermore, a compelling reconstruction of the evolutionary history of the MHC has been hampered due to phylogenetic gaps and the absence of comparative phylogenetic methods applied to comparative genomics. Here I reconstruct 320 MY of MHC evolution using 42 amniote genomes using improved gene annotations, genomic alignments and phylogenetic algorithms to reconstruct the evolution of the MHC at three levels of phylogenetic resolution. The first one describes 25 MY of evolution of the primate MHC using eight Human and four non-Human primate MHC haplotypes. Results suggests that highly dense gene segments have a strikingly conserved gene organization, and six conserved and highly rearranging segments overlap genes that are most commonly associated to disease. Phylogenomic analysis implies that the MHC has remained stable in gene content and size, with significantly increased duplication rates in the primate ancestors. The second one describes 280 MY of MHC evolution through the first characterization of reptilian MHC region, which combines mammalian, reptilian, Bird and amphibian characteristics, which favors the hypothesis of the existence of a primordial MHC in which natural killer receptors, CD1 and lectin genes co-exist. The Anolis MHC expands our understanding of the origins of the exceptionally small Bird MHC regions and provides further information about the organization and size of the ancestral amniote MHC. The third one compares 42 amniote MHC regions and map gene duplications and losses to further evaluate the mode and tempo of the evolution of the region. Comparative phylogenetic methods imply that the genomic and environmental factors affect the diversification of MHC during 320 My of evolution.

Page generated in 0.0962 seconds