• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 13
  • 10
  • 5
  • 1
  • Tagged with
  • 113
  • 27
  • 14
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Syntaktická analýza založená na multigenerování / Parsing Based on Multigeneration

Kyjovská, Linda January 2008 (has links)
This work deals with syntax analysis problems based on multi-generation. The basic idea is to create computer program, which transforms one input string to n -1 output strings. An Input of this program is some plain text file created by user, which contains n grammar rules. Just one grammar from the input file is marked as an input grammar and others n -1 grammars are output grammars. This program creates list of used input grammar rules for an input string and uses corresponding output grammar rules for the creation of n -1 output strings. The program is written in C++ and Bison
112

Ancient environmental DNA as a means of understanding ecological restructuring during the Pleistocene-Holocene transition in Yukon, Canada

Murchie, Tyler James January 2021 (has links)
Humans evolved in a world of giant creatures. Current evidence suggests that most ice age megafauna went extinct around the transition to our current Holocene epoch. The ecological reverberations associated with the loss of over 65% of Earth’s largest terrestrial animals transformed ecosystems and human lifeways forever thereafter. However, there is still substantial debate as to the cause of this mass extinction. Evidence variously supports climate change and anthropogenic factors as primary drivers in the restructuring of the terrestrial biosphere. Much of the ongoing debate is driven by the insufficient resolution accessible via macro-remains. To help fill in the gaps in our understandings of the Pleistocene-Holocene transition, I utilized the growing power of sedimentary ancient DNA (sedaDNA) to reconstruct shifting signals of plants and animals in central Yukon. To date, sedaDNA has typically been analyzed by amplifying small, taxonomically informative regions. However, this approach is not ideally suited to the degraded characteristics of sedaDNA and ignores most of the potential data. Means of isolating sedaDNA have also suffered from the use of overly aggressive purification techniques resulting in substantial loss. To address these limitations, I first experimentally developed a novel means of releasing and isolating sedaDNA. Secondly, I developed a novel environmental bait-set designed to simultaneously capture DNA informative of macro-scale ecosystems. When combined, we identify a substantial improvement in the quantity and breadth of biomolecules recovered. These optimizations facilitated the unexpected discovery of horse and mammoth surviving thousands of years after their supposed extirpation. I followed up these results by extracting DNA from multiple permafrost cores where we confirm the late survival signal and identify a far more complex and high-resolution dataset beyond those identifiable by complementary methods. I was also able to reconstruct mitochondrial genomes from multiple megafauna simultaneously solely from sediment, demonstrating the information potential of sedaDNA. / Dissertation / Doctor of Philosophy (PhD) / A new addition to the rapidly growing field of palaeogenetics is environmental DNA (eDNA) with its immense wealth of biomolecules preserved over millennia outside of biological tissues. Organisms are constantly shedding cells, and while most of this DNA is metabolized or otherwise degraded, some small fraction is preserved through sedimentary mineral-binding. I experimentally developed new ancient eDNA methods for recovery, isolation, and analysis to maximize our access to these biomolecules and demonstrate that this novel approach outperforms alternative protocols. Thereafter, I used these methods to extract DNA from ice age permafrost samples dating between 30,000–6,000 years before present. These data demonstrate the power of ancient eDNA for reconstructing ecosystem change through time, as well as identifying evidence for the Holocene survival of caballine horse and woolly mammoth in continental North America. This late persistence of Pleistocene fauna has implications for understanding the human ecological and climatological factors involved in the Late Pleistocene mass extinction event. This effort is paralleled with megafaunal mitogenomic assembly and phylogenetics solely from sediment. This thesis demonstrates that environmental DNA can significantly augment macro-scale buried records in palaeoecology.
113

Utilisation de l'espace par les grands herbivores dans un environnement hétérogène et dynamique : méthodologie et applications

Prima, Marie-Caroline 07 May 2019 (has links)
L’objectif général de cette thèse est de développer des modèles mécanistes de l’utilisation de l’espace qui sont basés sur les déplacements des animaux, afin de comprendre et d’anticiper la répartition spatiale des populations animales dans des environnements hétérogènes et dynamiques. J’utilise et je développe des méthodologies qui intègrent autant la modélisation mathématique de la dynamique spatio-temporelle des déplacements que des analyses statistiques de données simulées et empiriques de déplacement. Dans mon premier chapitre, j’effectue une série de simulations afin de clarifier combien de grappes sont nécessaires lors d’une estimation par équations d’estimation généralisées, pour correctement tenir compte de la corrélation dans les données de déplacement et obtenir des inférences robustes sur la sélection de l’habitat. Mes simulations révèlent que 30 individus indépendants, chacun étant assigné à une grappe, suffisent pour éviter la mesure biaisée de l’incertitude sur la sélection de l’habitat lors des déplacements dans un environnement hétérogène. Dans le cas où moins de 30 individus sont disponibles, il est possible d’augmenter le nombre de grappes en divisant les données des individus, cependant il faut s’assurer de la présence d’une autocorrélation temporelle et d’une faible hétérogénéité interindividuelle dans les données. Dans mon deuxième chapitre, je développe un modèle statistique de déplacement permettant d’identifier différentes phases comportementales par lesquelles passent les individus (p. ex., alimentation, déplacements entre les parcelles de ressource) et de révéler la sélection de l’habitat spécifique à chaque phase, pour l’ensemble de la population et à partir de données collectées irrégulièrement. L’analyse de données simulées et empiriques de déplacement de trois grands herbivores dont le bison des prairies (Bison bison bison), le cerf à queue noire (Odocoileus hemionus) et le zèbre des plaines (Equus quagga) démontrent la robustesse et la bonne capacité de prévision du modèle. Cet outil statistique est également flexible puisque j’évalue différents processus écologiques à partir de ces données tels que l’alimentation, la migration ou encore les réponses comportementales face à un prédateur. De plus, je montre la nécessité de tenir compte des phases comportementales pour correctement caractériser la sélection de l’habitat lors des déplacements des animaux. Le développement mathématique que j’ai effectué dans mon troisième chapitre permet de coupler les déplacements des individus au sein d’un réseau de parcelles de ressources et le temps de résidence dans les parcelles afin de prévoir, de façon mécaniste, la répartition spatiale d’une population dans un environnement hétérogène. De plus, j’illustre une méthodologie pour identifier et prévoir le réseau théorique le plus représentatif de l’espèce étudiée. Je démontre à partir de l’application du modèle aux données de bisons des prairies, que la topologie du réseau théorique est cruciale pour correctement anticiper l’utilisation de l’espace d’une population, ainsi que pour implémenter des plans de gestion ou de conservation les plus réalistes possibles. Dans mon chapitre 4, je teste empiriquement la robustesse d’un réseau de parcelles de ressources lorsque celui-ci est perturbé par une fragmentation anthropique du paysage. Les résultats révèlent que les caribous des bois (Rangifer tarandus caribou) reconnectent certaines parcelles favorisant ainsi la robustesse du réseau. Cependant, les prévisions de la répartition spatiale des individus obtenues en utilisant le modèle mécaniste développé dans le chapitre 3 démontrent que, malgré la reconnexion, l’utilisation des parcelles de ressources par les caribous change suite à la perturbation. De plus, ce changement est plus soutenu lorsque ce sont les parcelles les plus connectées (c.-à-d., les pôles) qui sont fragmentées. Ma thèse apporte une contribution méthodologique pour mieux tenir compte de la corrélation dans les données de déplacement et intégrer les phases comportementales lors de l’analyse de la sélection de l’habitat dans des paysages hétérogènes. Mon travail permet aussi de faire le lien entre la théorie des réseaux et l’utilisation de l’espace pour prévoir d’une façon mécaniste la répartition spatiale des populations animales dans des environnements hétérogènes et dynamiques. Mon doctorat donne également lieu à une évaluation du contexte dans lequel la théorie des réseaux peut s’appliquer à l’écologie spatiale. Finalement, ma thèse vient améliorer notre compréhension mécaniste des déplacements de quatre espèces de grands herbivores. / In my thesis, I develop mechanistic models of space use based on animal movement, to understand and to predict population distribution in heterogeneous and dynamic landscapes. Used and developed methodologies couple mathematical modelling of the spatio-temporal dynamics of animal movement together with statistical analysis of simulated and empirical movement datasets. In my first chapter, I proceed in a series of simulations to clarify how many clusters are needed when using generalized estimating equations to correctly account for the correlation in movement data and to obtain robust inference on habitat selection. My simulations reveal that 30 independent individuals, each assigned to a cluster, are sufficient to avoid biased evaluation of the uncertainty on habitat selection along movement in heterogeneous environments. When less than 30 individuals are available, destructive sampling can be used but solely when temporal correlation is present and inter-individual heterogeneity is low in the data. In my second chapter, I develop a statistical movement model that allows to identify successive behavioral phases (e.g., foraging phase, inter-patch movement) together with behavior-specific habitat selection parameters, over the whole population and using temporally irregular data. Analysis of simulated and empirical movement data from three large herbivores including plains bison (Bison bison bison), mule deer (Odocoileus hemionus) and plains zebra (Equus quagga) show the robustness and the high predictive capacity of the model. This statistical tool is also flexible since I assess multiple ecological processes from those datasets such as foraging behavior, migratory behavior or prey-predator interactions. In addition, I show how accounting for behavioral phases in habitat selection analysis is crucial to correctly characterize habitat selection along animal movement. In my third chapter, I develop a mathematical framework to couple movement of individuals among a network of resource patches with residency time in patches to mechanistically predict space use in heterogeneous landscapes. In addition, I illustrate a methodology to identify and predict the most representative theoretical network for the target species. I show from model application on data of plains bison that the theoretical network topology is crucial to correctly infer population space use and implement realistic management and conservation planning. In my chapter 4, I empirically assess the robustness of a network of resource patches following landscape fragmentation from anthropogenic source. The analysis shows that woodland caribou (Rangifer tarandus caribou) reconnect some patches, thus causing robustness in their spatial networks. However, predictions on space use from the mechanistic model developed in chapter 3 reveal that, despite the rewiring, patch use change following the fragmentation. Moreover, this change is stronger when the most connected patches (i.e., the hubs) are impacted. My thesis provides a methodological contribution to better account for correlation in movement data and integrate behavioral phases in habitat selection analysis in heterogeneous landscapes. Besides, my work links network theory and space use to mechanistically predict population distribution in heterogeneous and dynamic environments. My research also assesses the context in which network theory can be applied to spatial ecology. Finally, my thesis improves our mechanistic understanding of animal movement in four species of large herbivores.

Page generated in 0.0312 seconds