• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of Macro- and Micro-Compliant Mechanism Configurations Resulting in Bistable Behavior

Jensen, Brian D. 24 June 2003 (has links) (PDF)
The purpose of this research is to identify the configurations of several mechanism classes which result in bistable behavior. Bistable mechanisms have use in many applications, such as switches, clasps, closures, hinges, and so on. A powerful method for the design of such mechanisms would allow the realization of working designs much more easily than has been possible in the past. A method for the design of bistable mechanisms is especially needed for micro-electro-mechanical systems (MEMS) because fabrication and material constraints often prevent the use of simple, well-known bistable mechanism configurations. In addition, this knowledge allows designers to take advantage of the many benefits of compliant echanisms, especially their ability to store and release energy in their moving segments. Therefore, an analysis of a variety of mechanism classes has been performed to determine the configurations of compliant segments or rigid-body springs in a mechanism which result in bistable behavior. The analysis revealed a relationship between the placement of compliant segments and the stability characteristics of the mechanism which allows either analysis or synthesis of bistable mechanisms to be performed very easily. Using this knowledge, a method of type synthesis for bistable mechanisms has been developed which allows bistable mechanisms to be easily synthesized. Several design examples have been presented which demonstrate the method. The theory has also been applied to the design of several bistable micromechanisms. In the process of searching for usable designs for micro-bistable mechanisms, a mechanism class was defined, known as "Young" mechanisms, which represent a feasible and useful way of achieving micro-mechanism motion similar to that of any four-bar mechanism. Based on this class, several bistable micro-mechanisms were designed and fabricated. Testing demonstrated the ability of the mechanisms to snap between the two stable states. In addition, the mechanisms showed a high degree of repeatability in their stable positions.
2

Stability and morphing characteristics of bistable composite laminates

Tawfik, Samer Anwar 08 July 2008 (has links)
The focus of the current research is to investigate the potential of using bistable unsymmetric cross-ply laminated composites as a means for achieving structures with morphed characteristics. To this end, an investigation of the design space for laminated composites exhibiting bistable behavior is undertaken and the key parameters controlling their behavior are identified. For this purpose a nonlinear Finite Element methodology using ABAQUS code is developed to predict both the cured shapes and the stability characteristics of unsymmetric cross-ply laminates. In addition, an experimental program is developed to validate the analytically predicted results through comparison with test data. A new method is proposed for attaching piezoelectric actuators to a bistable panel in order to preserve its favorable stability characteristics as well as optimizing the actuators performance. The developed nonlinear FE methodology is extended to predict the actuation requirements of bistable panels. Actuator requirements, predicted using the nonlinear FE analysis, are found to be in agreement with the test results. The current research also explores the potential for implementing bistable panels for Uninhabited Aerial Vehicle (UAV) wing configuration. To this end, a set of bistable panels is manufactured by combining symmetric and unsymmetric balanced and unbalanced stacking sequence and their stability characteristics are predicted. A preliminary analysis of the aerodynamic characteristics of the manufactured panels is carried out and the aerodynamic benefits of manufactured bistable panel are noted.

Page generated in 0.065 seconds