Spelling suggestions: "subject:"bistramide"" "subject:"bistramides""
1 |
Synthèse totale du bistramide A, d'analogues et de spirocétals d'intérêt biologique / Total synthesis of bistramide A, analogs and spiroketal of biological interestTomas, Loïc 08 November 2010 (has links)
L'étude des molécules issues du milieu naturel a conduit les chercheurs à s'intéresser à la synthèse d'un motif structural commun à un grand nombre de molécules bioactives, les spirocétals. La mise au point au sein de notre laboratoire, d'une méthodologie de synthèse d'éthers d'énols exo-cycliques, précurseur de spirocétals, nous a conduits à nous intéresser au fragment spirocétal puis à la synthèse totale du bistramide A. Cette molécule naturelle, issue d'un animal marin présente d'importantes propriétés cytotoxiques la plaçant comme un agent anti-tumoral ou inflammatoire potentiel. Notre méthodologie de synthèse d'éthers d'énols consistant au couplage d'une lactone et d'une sulfone selon une réaction de type Julia, nous a permis d'obtenir l'éther d'énol cible qui par spirocyclisation intramoléculaire a conduit au motif spirocétal [6,6] du bistramide A. La molécule naturelle ainsi que deux analogues sont ensuite obtenus par fonctionnalisation des chaînes latérales du spirocétal, et couplage avec les fragments de type aminoacide et tétrahydropyrane fournis respectivement par le groupe du Pr. Yli-Kauhaluoma et celui du Pr. Piva. L'étude biologique des produits montre d'intéressantes propriétés de différenciation cellulaire, de déclenchement de l'apoptose et de blocage de la cytodiérèse. L'application de notre méthodologie, à la synthèse du SPIKET, ainsi qu'à l'obtention du spirocétal [5,6] de l'atténol A, permet d'étendre le domaine d'application de cette synthèse d'éthers d'énols exo-cycliques / Spiroketals are widely occurring substructures in natural products. The ever-increasing range of pharmacological activities displayed by products containing spiroketals has triggered an intense interest in their study, both from a synthetic and biological aspect. The development in our laboratory of an original enol ether synthesis motivated us to prepare the spiroketal fragment of bistramide A and, subsequently, to undertake its total synthesis. Bistramide A is a biologically active molecule isolated from the marine ascidian Lissoclinum bistratum that has emerged as a potential anti-inflammatory and anti-tumoral agent based on its high cytotoxicity and potent antiproliferative effect. The [6,6] spiroketal ring system of the natural product was accessed using a modification of the Julia olefination, extended to the reaction between a lactone and a heteroarylsulfone to prepare an exocyclic enol ether. The lactone and sulfone precursors were synthesized from a common starting material, dicyclohexylidene-D-mannitol. Bistramide A and two of its analogs were prepared by functionalization of the spiroketal side chains, followed by coupling reactions with the amino acid and tetrahydropyran subunits prepared by the groups of Pr. Yli-Kauhaluoma and Pr. Piva, respectively. An alternative approach to the precursor of the tetrahydropyran system from the chiral pool was developed. Biological studies revealed interesting effects on cellular differentiation, apoptosis, and cytokinesis. Application of our methodology to the synthesis of SPIKET and studies towards the [5,6] spiroketal of attenol A, gave us the opportunity to extend the scope of our exocyclic enol ether methodology
|
2 |
Formation d'éthers d'énol par réaction de type Julia- Kocienski et leur conversion en spirocétals : application à la synthèse de la Broussonetine H et à la synthèse d'analogues du Bistramide ABourdon, Benjamin 12 November 2009 (has links) (PDF)
Les spirocétals sont des sous-unités présentes dans de nombreuses molécules naturelles d'intérêt biologique. Pour accéder à ces structures, la spirocyclisation d'éthers d'énol en milieu acide est une méthode de choix. L'application de la réaction de Julia-Kocienski à des lactones a permis d'obtenir exo-glycals et éthers d'énol exo-cycliques tri- et tétrasubstitués. Selon l'hétérocycle porté parla sulfone engagée, l'un ou l'autre des diastéréoisomères de l'éther d'énol peut être obtenu préférentiellement. La spirocyclisation des produits formés, si elle est réalisée dans des conditions thermodynamiques, mène au [6.6]-spirocétal le plus stable. Des conditions permettant d'obtenir le diastéréoisomère cinétique ont également été étudiées. Les spirocétals ainsi préparés ont été utilisés en synthèse totale. Par exemple, le fragment spirocétal de la Broussonetine H, ainsi que l'unité iminosucre, ont été obtenus efficacement de façon énantiopure. Enfin, les spirocétals diversement substitués ont permis de préparer plusieurs analogues du Bistramide A. Ce métabolite marin est un agent anticancéreux puissant qui se lie à l'actine pour bloquer la division cellulaire mais des interactions avec PKC-TM, notamment impliquant l'apoptose, sont à l'étude.
|
3 |
Formation d’éthers d’énol par réaction de type Julia- Kocienski et leur conversion en spirocétals : application à la synthèse de la Broussonetine H et à la synthèse d’analogues du Bistramide A / Enol ethers synthesis by Julia-Kocienski-like reaction and their conversion into spiroketals : application to the synthesis of Broussonetine H and to synthesis of Bistramide A analoguesBourdon, Benjamin 12 November 2009 (has links)
Les spirocétals sont des sous-unités présentes dans de nombreuses molécules naturelles d’intérêt biologique. Pour accéder à ces structures, la spirocyclisation d’éthers d’énol en milieu acide est une méthode de choix. L’application de la réaction de Julia-Kocienski à des lactones a permis d’obtenir exo-glycals et éthers d’énol exo-cycliques tri- et tétrasubstitués. Selon l’hétérocycle porté parla sulfone engagée, l’un ou l’autre des diastéréoisomères de l’éther d’énol peut être obtenu préférentiellement. La spirocyclisation des produits formés, si elle est réalisée dans des conditions thermodynamiques, mène au [6.6]-spirocétal le plus stable. Des conditions permettant d’obtenir le diastéréoisomère cinétique ont également été étudiées. Les spirocétals ainsi préparés ont été utilisés en synthèse totale. Par exemple, le fragment spirocétal de la Broussonetine H, ainsi que l’unité iminosucre, ont été obtenus efficacement de façon énantiopure. Enfin, les spirocétals diversement substitués ont permis de préparer plusieurs analogues du Bistramide A. Ce métabolite marin est un agent anticancéreux puissant qui se lie à l’actine pour bloquer la division cellulaire mais des interactions avec PKC-TM, notamment impliquant l’apoptose, sont à l’étude / Spiroketals are often found as structural subunits of many biologically active natural compounds. One of the more powerful methods to access this structure is the acid-catalyzed cyclization of enol ethers. The reaction of Julia-Kocienski reagents with lactones allows us to synthesize various tri- and tetrasubstituted exo-glycals and exo-cyclic enol ethers. It is possible to obtain preferentially either one or the other of the two diastereoisomeric enol ethers by varrying the heterocycle moiety of the sulfone. These enol éthers are cyclized under thermodynamic conditions leading to the more stable [6.6]-spiroketal but other conditions may allow us to obtain the kineticisomer. Thermodynamic spiroketals were used in total synthesis. For example, both fragments ofBroussonetine H (one iminosugar and one spiroketal) have been readily and effectively prepared.Finally, diversely substituted spiroketals have been synthesized to prepare analogues of Bistramide A.This marine metabolite is a powerful antitumor agent that binds to actin and thus blocks cell divisionalthough some interactions involving PKC-TM are actually under study.
|
Page generated in 0.0665 seconds