Spelling suggestions: "subject:"bitinterleaved"" "subject:"interleaved""
1 |
Bit-Interleaved Coded Modulation with Iterative Demapping and Decoding for Non-Coherent MIMO CommunicationEl-Azizy, Mohamed 08 1900 (has links)
<p> The goal of this thesis is the development of a computationally-efficient coded system that enables communication over the non-coherent Multiple-Input Multiple-Output (MIMO) fiat-fading wireless channel at high data rates. The proposed signalling technique applies the principles of Bit-Interleaved Coded Modulation (BICM) with Iterative Demapping and Decoding (IDD) to non-coherent MIMO communication systems. </p> <p> The principle of BICM is applied to a constellation that mimics the non-coherent capacity achieving distribution at high signal to noise ratios. The capacity achieving distribution is in the form of isotropically distributed unitary matrices, and the constellation can be represented by points on a Grassmannian manifold. A mapping technique that exploits the Grassmannian geometry is proposed. This mapping technique is based on the partitioning of the constellation into two subsets. The Grassmannian geometry also gives rise to an efficient list-based demapping algorithm that substantially reduces the computational complexity of the receiver while incurring some degradation in performance. For example, at a bit error rate (BER) of 10-4 the signal to noise ratio (SNR) performance degradation with respect to full constellation demapping is approximately 1. 75 dB. A technique by which the decoder can augment the demapping list is proposed, and it is shown that the performance degradation of the efficient algorithm can be rendered insignificant (approximately 0.2 dB at a BER of 10-4). </p> <p> Finally, the performance of the proposed BICM-IDD using the Grassmannian constellation will be compared to that of a corresponding training-based BICM-IDD scheme. These simulations show that the proposed scheme can provide better performance at high data rates; e.g., for a data rate of 5/3 bits per channel use, the performance gap is almost 1 dB at BER of 10^(-4). </p> / Thesis / Master of Applied Science (MASc)
|
2 |
Novel BICM HARQ Algorithm Based on Adaptive ModulationsKumar, Kuldeep, Perez-Ramirez, Javier 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / A novel type-II hybrid automatic repeat request (HARQ) algorithm using adaptive modulations and bit-interleaved coded modulation (BICM) is presented. The algorithm uses different optimized puncturing patterns for different transmissions of the same data packet. The proposed approach exploits mapping diversity through BICM with iterative decoding. The modulation order is changed in each transmission to keep the number of symbols transmitted constant. We present new bit error rate and frame error rate analytical results for the proposed technique showing good agreement with simulation results. We compare the throughput performance of our proposed HARQ technique with a reference HARQ technique that uses different mapping arrangements but keeps the modulation order fixed. By using optimized puncturing patterns and adaptive modulations, our method provides significantly better throughput performance over the reference HARQ method in the whole signalto- noise ratio (SNR) range, and achieves a gain of 12 dB in the medium SNR region.
|
3 |
Exploiting diversity in wireless channels with bit-interleaved coded modulation and iterative decoding (BICM-ID)Tran, Huu Nghi 23 April 2008
<p>This dissertation studies a state-of-the-art bandwidth-efficient coded modulation technique, known as bit interleaved coded modulation with iterative decoding (BICM-ID), together with various diversity techniques to dramatically improve the performance of digital communication systems over wireless channels.</p>
<p>For BICM-ID over a single-antenna frequency non-selective fading channel, the problem of mapping over multiple symbols, i.e., multi-dimensional (multi-D) mapping, with 8-PSK constellation is investigated. An explicit algorithm to construct a good multi-D mapping of 8-PSK to improve the asymptotic performance of BICM-ID systems is introduced. By comparing the performance of the proposed mapping with an unachievable lower bound, it is conjectured that the proposed mapping is the global optimal mapping. The superiority of the proposed mapping over the best conventional (1-dimensional complex) mapping and the multi-D mapping found previously by computer search is thoroughly demonstrated.</p>
<p>In addition to the mapping issue in single-antenna BICM-ID systems, the use of signal space diversity (SSD), also known as linear constellation precoding (LCP), is considered in BICM-ID over frequency non-selective fading channels. The performance analysis of BICM-ID and complex N-dimensional signal space diversity is carried out to study its performance limitation, the choice of the rotation matrix and the design of a low-complexity receiver. Based on the design criterion obtained from a tight error bound, the optimality of the rotation matrix is established. It is shown that using the class of optimal rotation matrices, the performance of BICM-ID systems over a frequency non-selective Rayleigh fading channel approaches that of the BICM-ID systems over an additive white Gaussian noise (AWGN) channel when the dimension of the signal constellation increases. Furthermore, by exploiting the sigma mapping for any M-ary quadrature amplitude modulation (QAM) constellation, a very simple sub-optimal, yet effective iterative receiver structure suitable for signal constellations with large dimensions is proposed. Simulation results in various cases and conditions indicate that the proposed receiver can achieve the analytical performance bounds with low complexity.</p>
<p>The application of BICM-ID with SSD is then extended to the case of cascaded Rayleigh fading, which is more suitable to model mobile-to-mobile communication channels. By deriving the error bound on the asymptotic performance, it is first illustrated that for a small modulation constellation, a cascaded Rayleigh fading causes a much more severe performance degradation than a
conventional Rayleigh fading. However, BICM-ID employing SSD with a sufficiently large constellation can close the performance gap between the Rayleigh and cascaded Rayleigh fading channels, and their performance can closely approach that over an AWGN channel.</p>
<p>In the next step, the use of SSD in BICM-ID over frequency selective Rayleigh fading channels employing a multi-carrier modulation technique known as orthogonal frequency division multiplexing (OFDM) is studied. Under the assumption of correlated fading over subcarriers, a tight bound on the asymptotic error performance for the general case of applying SSD over all N subcarriers is derived and used to establish the best achievable asymptotic performance by SSD. It is then shown that precoding over subgroups of at least L subcarriers per group, where L is the number of channel taps, is sufficient to obtain this best asymptotic error performance, while significantly reducing the receiver complexity. The optimal joint subcarrier grouping and rotation matrix design is subsequently determined by solving the Vandermonde linear system. Illustrative examples show a good agreement between various analytical and simulation results.</p>
<p>Further, by combining the ideas of multi-D mapping and subcarrier grouping, a novel power and bandwidth-efficient bit-interleaved coded modulation with OFDM and iterative decoding (BI-COFDM-ID) in which multi-D mapping is performed over a group of subcarriers for broadband transmission in a frequency selective fading environment is proposed. A tight bound on the asymptotic error performance is developed, which shows that subcarrier mapping and grouping have independent impacts on the overall error performance, and hence they can be independently optimized. Specifically, it is demonstrated that the optimal subcarrier mapping is similar to the optimal multi-D mapping for BICM-ID in frequency non-selective Rayleigh fading environment, whereas the optimal subcarrier grouping is the same with that of OFDM with SSD. Furthermore, analytical and simulation results show that the proposed system with the combined optimal subcarrier mapping and grouping can achieve the full channel diversity without using SSD and provide significant coding gains as compared to the previously studied BI-COFDM-ID with the same power, bandwidth and receiver complexity.</p>
<p>Finally, the investigation is extended to the application of BICM-ID over a multiple-input multiple-output (MIMO) system equipped with multiple antennas at both the transmitter and the receiver to exploit both time and spatial diversities, where neither the transmitter nor the receiver knows the channel fading coefficients. The concentration is on the class of unitary constellation, due to its advantages in terms of both information-theoretic capacity and error probability. The tight error bound with respect to the asymptotic performance is also derived for any given unitary constellation and mapping rule. Design criteria regarding the choice of unitary constellation and mapping are then established. Furthermore, by using the unitary constellation obtained from orthogonal design with quadrature phase-shift keying (QPSK or 4-PSK) and 8-PSK, two different mapping rules are proposed. The first mapping rule gives the most suitable mapping for systems that do not implement iterative processing, which is similar to a Gray mapping in coherent channels. The second mapping rule yields the best mapping for systems with iterative decoding. Analytical and simulation results show that with the proposed mappings of the unitary constellations obtained from orthogonal designs, the asymptotic error performance of the iterative systems can closely approach a lower bound which is applicable to any unitary constellation and mapping.</p>
|
4 |
Exploiting diversity in wireless channels with bit-interleaved coded modulation and iterative decoding (BICM-ID)Tran, Huu Nghi 23 April 2008 (has links)
<p>This dissertation studies a state-of-the-art bandwidth-efficient coded modulation technique, known as bit interleaved coded modulation with iterative decoding (BICM-ID), together with various diversity techniques to dramatically improve the performance of digital communication systems over wireless channels.</p>
<p>For BICM-ID over a single-antenna frequency non-selective fading channel, the problem of mapping over multiple symbols, i.e., multi-dimensional (multi-D) mapping, with 8-PSK constellation is investigated. An explicit algorithm to construct a good multi-D mapping of 8-PSK to improve the asymptotic performance of BICM-ID systems is introduced. By comparing the performance of the proposed mapping with an unachievable lower bound, it is conjectured that the proposed mapping is the global optimal mapping. The superiority of the proposed mapping over the best conventional (1-dimensional complex) mapping and the multi-D mapping found previously by computer search is thoroughly demonstrated.</p>
<p>In addition to the mapping issue in single-antenna BICM-ID systems, the use of signal space diversity (SSD), also known as linear constellation precoding (LCP), is considered in BICM-ID over frequency non-selective fading channels. The performance analysis of BICM-ID and complex N-dimensional signal space diversity is carried out to study its performance limitation, the choice of the rotation matrix and the design of a low-complexity receiver. Based on the design criterion obtained from a tight error bound, the optimality of the rotation matrix is established. It is shown that using the class of optimal rotation matrices, the performance of BICM-ID systems over a frequency non-selective Rayleigh fading channel approaches that of the BICM-ID systems over an additive white Gaussian noise (AWGN) channel when the dimension of the signal constellation increases. Furthermore, by exploiting the sigma mapping for any M-ary quadrature amplitude modulation (QAM) constellation, a very simple sub-optimal, yet effective iterative receiver structure suitable for signal constellations with large dimensions is proposed. Simulation results in various cases and conditions indicate that the proposed receiver can achieve the analytical performance bounds with low complexity.</p>
<p>The application of BICM-ID with SSD is then extended to the case of cascaded Rayleigh fading, which is more suitable to model mobile-to-mobile communication channels. By deriving the error bound on the asymptotic performance, it is first illustrated that for a small modulation constellation, a cascaded Rayleigh fading causes a much more severe performance degradation than a
conventional Rayleigh fading. However, BICM-ID employing SSD with a sufficiently large constellation can close the performance gap between the Rayleigh and cascaded Rayleigh fading channels, and their performance can closely approach that over an AWGN channel.</p>
<p>In the next step, the use of SSD in BICM-ID over frequency selective Rayleigh fading channels employing a multi-carrier modulation technique known as orthogonal frequency division multiplexing (OFDM) is studied. Under the assumption of correlated fading over subcarriers, a tight bound on the asymptotic error performance for the general case of applying SSD over all N subcarriers is derived and used to establish the best achievable asymptotic performance by SSD. It is then shown that precoding over subgroups of at least L subcarriers per group, where L is the number of channel taps, is sufficient to obtain this best asymptotic error performance, while significantly reducing the receiver complexity. The optimal joint subcarrier grouping and rotation matrix design is subsequently determined by solving the Vandermonde linear system. Illustrative examples show a good agreement between various analytical and simulation results.</p>
<p>Further, by combining the ideas of multi-D mapping and subcarrier grouping, a novel power and bandwidth-efficient bit-interleaved coded modulation with OFDM and iterative decoding (BI-COFDM-ID) in which multi-D mapping is performed over a group of subcarriers for broadband transmission in a frequency selective fading environment is proposed. A tight bound on the asymptotic error performance is developed, which shows that subcarrier mapping and grouping have independent impacts on the overall error performance, and hence they can be independently optimized. Specifically, it is demonstrated that the optimal subcarrier mapping is similar to the optimal multi-D mapping for BICM-ID in frequency non-selective Rayleigh fading environment, whereas the optimal subcarrier grouping is the same with that of OFDM with SSD. Furthermore, analytical and simulation results show that the proposed system with the combined optimal subcarrier mapping and grouping can achieve the full channel diversity without using SSD and provide significant coding gains as compared to the previously studied BI-COFDM-ID with the same power, bandwidth and receiver complexity.</p>
<p>Finally, the investigation is extended to the application of BICM-ID over a multiple-input multiple-output (MIMO) system equipped with multiple antennas at both the transmitter and the receiver to exploit both time and spatial diversities, where neither the transmitter nor the receiver knows the channel fading coefficients. The concentration is on the class of unitary constellation, due to its advantages in terms of both information-theoretic capacity and error probability. The tight error bound with respect to the asymptotic performance is also derived for any given unitary constellation and mapping rule. Design criteria regarding the choice of unitary constellation and mapping are then established. Furthermore, by using the unitary constellation obtained from orthogonal design with quadrature phase-shift keying (QPSK or 4-PSK) and 8-PSK, two different mapping rules are proposed. The first mapping rule gives the most suitable mapping for systems that do not implement iterative processing, which is similar to a Gray mapping in coherent channels. The second mapping rule yields the best mapping for systems with iterative decoding. Analytical and simulation results show that with the proposed mappings of the unitary constellations obtained from orthogonal designs, the asymptotic error performance of the iterative systems can closely approach a lower bound which is applicable to any unitary constellation and mapping.</p>
|
5 |
Coded Modulation for High Speed Optical Transport NetworksBatshon, Hussam George January 2010 (has links)
At a time where almost 1.75 billion people around the world use the Internet on a regular basis, optical communication over optical fibers that is used in long distance and high demand applications has to be capable of providing higher communication speed and re-liability. In recent years, strong demand is driving the dense wavelength division multip-lexing network upgrade from 10 Gb/s per channel to more spectrally-efficient 40 Gb/s or 100 Gb/s per wavelength channel, and beyond. The 100 Gb/s Ethernet is currently under standardization, and in a couple of years 1 Tb/s Ethernet is going to be standardized as well for different applications, such as the local area networks (LANs) and the wide area networks (WANs). The major concern about such high data rates is the degradation in the signal quality due to linear and non-linear impairments, in particular polarization mode dispersion (PMD) and intrachannel nonlinearities. Moreover, the higher speed transceivers are expensive, so the alternative approaches of achieving the required rates is preferably done using commercially available components operating at lower speeds.In this dissertation, different LDPC-coded modulation techniques are presented to offer a higher spectral efficiency and/or power efficiency, in addition to offering aggregate rates that can go up to 1Tb/s per wavelength. These modulation formats are based on the bit-interleaved coded modulation (BICM) and include: (i) three-dimensional LDPC-coded modulation using hybrid direct and coherent detection, (ii) multidimensional LDPC-coded modulation, (iii) subcarrier-multiplexed four-dimensional LDPC-coded modulation, (iv) hybrid subcarrier/amplitude/phase/polarization LDPC-coded modulation, and (v) iterative polar quantization based LDPC-coded modulation.
|
6 |
Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast SystemsFuentes Muela, Manuel 07 July 2017 (has links)
Nowadays, the digital terrestrial television (DTT) market is characterized by the high capacity needed for high definition TV services. There is a need for an efficient use of the broadcast spectrum, which requires new technologies to guarantee increased capacities. Non-Uniform Constellations (NUC) arise as one of the most innovative techniques to approach those requirements. NUCs reduce the gap between uniform Gray-labelled Quadrature Amplitude Modulation (QAM) constellations and the theoretical unconstrained Shannon limit. With these constellations, symbols are optimized in both in-phase (I) and quadrature (Q) components by means of signal geometrical shaping, considering a certain signal-to-noise ratio (SNR) and channel model.
There are two types of NUC, one-dimensional and two-dimensional NUCs (1D-NUC and 2D-NUC, respectively). 1D-NUCs maintain the squared shape from QAM, but relaxing the distribution between constellation symbols in a single component, with non-uniform distance between them. These constellations provide better SNR performance than QAM, without any demapping complexity increase. 2D-NUCs also relax the square shape constraint, allowing to optimize the symbol positions in both dimensions, thus achieving higher capacity gains and lower SNR requirements. However, the use of 2D-NUCs implies a higher demapping complexity, since a 2D-demapper is needed, i.e. I and Q components cannot be separated.
In this dissertation, NUCs are analyzed from both transmit and receive point of views, using either single-input single-output (SISO) or multiple-input multiple-output (MIMO) antenna configurations. In SISO transmissions, 1D-NUCs and 2D-NUCs are optimized for a wide range of SNRs and different constellation orders. The optimization of rotated 2D-NUCs is also investigated. Even though the demapping complexity is not increased, the SNR gain of these constellations is not significant. The highest rotation gain is obtained for low-order constellations and high SNRs. However, with multi-RF techniques, the SNR gain is drastically increased, since I and Q components are transmitted in different RF channels. In this thesis, multi-RF gains of NUCs with and without rotation are provided for some representative scenarios.
At the receiver, two different implementation bottlenecks are explored. First, the demapping complexity of all considered constellations is analyzed. Afterwards, two complexity reduction algorithms for 2D-NUCs are proposed. Both algorithms drastically reduce the number of distances to compute. Moreover, both are finally combined in a single demapper. Quantization of NUCs is also explored in this dissertation, since LLR values and I/Q components are modified when using these constellations, compared to traditional QAM constellations. A new algorithm that is based on the optimization of the quantizer levels for a particular constellation is proposed.
The use of NUCs in multi-antenna communications is also investigated. It includes the optimization in one or two antennas, the use of power imbalance, the cross-polar discrimination (XPD) between receive antennas, or the use of different demappers. Assuming different values for the parameters evaluated, new Multi-Antenna Non-Uniform Constellations (MA-NUC) are obtained by means of a particularized re-optimization process, specific for MIMO. At the receiver, an extended demapping complexity analysis is performed, where it is shown that the use of 2D-NUCs in MIMO extremely increases the demapping complexity. As an alternative, an efficient solution for 2D-NUCs and MIMO systems based on Soft-Fixed Sphere Decoding (SFSD) is proposed. The main drawback is that SFSD demappers do not work with 2D-NUCs, since they perform a Successive Interference Cancellation (SIC) step that needs to be performed in separated I and Q components. The proposed method quantifies the closest symbol using Voronoi regions and allows SFSD demappers to work. / Hoy en día, el mercado de la televisión digital terrestre (TDT) está caracterizado por la alta capacidad requerida para transmitir servicios de televisión de alta definición y el espectro disponible. Es necesario por tanto un uso eficiente del espectro radioeléctrico, el cual requiere nuevas tecnologías para garantizar mayores capacidades. Las constelaciones no-uniformes (NUC) emergen como una de las técnicas más innovadoras para abordar tales requerimientos. Las NUC reducen el espacio existente entre las constelaciones uniformes QAM y el límite teórico de Shannon. Con estas constelaciones, los símbolos se optimizan en ambas componentes fase (I) y cuadratura (Q) mediante técnicas geométricas de modelado de la señal, considerando un nivel señal a ruido (SNR) concreto y un modelo de canal específico.
Hay dos tipos de NUC, unidimensionales y bidimensionales (1D-NUC y 2D-NUC, respectivamente). Las 1D-NUC mantienen la forma cuadrada de las QAM, pero permiten cambiar la distribución entre los símbolos en una componente concreta, teniendo una distancia no uniforme entre ellos. Estas constelaciones proporcionan un mejor rendimiento SNR que QAM, sin ningún incremento en la complejidad en el demapper. Las 2D-NUC también permiten cambiar la forma cuadrada de la constelación, permitiendo optimizar los símbolos en ambas dimensiones y por tanto obteniendo mayores ganancias en capacidad y menores requerimientos en SNR. Sin embargo, el uso de 2D-NUCs implica una mayor complejidad en el receptor.
En esta tesis se analizan las NUC desde el punto de vista tanto de transmisión como de recepción, utilizando bien configuraciones con una antena (SISO) o con múltiples antenas (MIMO). En transmisiones SISO, se han optimizado 1D-NUCs para un rango amplio de distintas SNR y varios órdenes de constelación. También se ha investigado la optimización de 2D-NUCs rotadas. Aunque la complejidad no aumenta, la ganancia SNR de estas constelaciones no es significativa. La mayor ganancia por rotación se obtiene para bajos órdenes de constelación y altas SNR. Sin embargo, utilizando técnicas multi-RF, la ganancia aumenta drásticamente puesto que las componentes I y Q se transmiten en distintos canales RF. En esta tesis, se han estudiado varias ganancias multi-RF representativas de las NUC, con o sin rotación.
En el receptor, se han identificado dos cuellos de botella diferentes en la implementación. Primero, se ha analizado la complejidad en el receptor para todas las constelaciones consideradas y, posteriormente, se proponen dos algoritmos para reducir la complejidad con 2D-NUCs. Además, los dos pueden combinarse en un único demapper. También se ha explorado la cuantización de estas constelaciones, ya que tanto los valores LLR como las componentes I/Q se ven modificados, comparando con constelaciones QAM tradicionales. Además, se ha propuesto un algoritmo que se basa en la optimización para diferentes niveles de cuantización, para una NUC concreta.
Igualmente, se ha investigado en detalle el uso de NUCs en MIMO. Se ha incluido la optimización en una sola o en dos antenas, el uso de un desbalance de potencia, factores de discriminación entre antenas receptoras (XPD), o el uso de distintos demappers. Asumiendo distintos valores, se han obtenido nuevas constelaciones multi-antena (MA-NUC) gracias a un nuevo proceso de re-optimización específico para MIMO. En el receptor, se ha extendido el análisis de complejidad en el demapper, la cual se incrementa enormemente con el uso de 2D-NUCs y sistemas MIMO. Como alternativa, se propone una solución basada en el algoritmo Soft-Fixed Sphere Decoding (SFSD). El principal problema es que estos demappers no funcionan con 2D-NUCs, puesto que necesitan de un paso adicional en el que las componentes I y Q necesitan separarse. El método propuesto cuantifica el símbolo más cercano utilizando las regiones de Voronoi, permitiendo el uso de este tipo de receptor. / Actualment, el mercat de la televisió digital terrestre (TDT) està caracteritzat per l'alta capacitat requerida per a transmetre servicis de televisió d'alta definició i l'espectre disponible. És necessari per tant un ús eficient de l'espectre radioelèctric, el qual requereix noves tecnologies per a garantir majors capacitats i millors servicis. Les constel·lacions no-uniformes (NUC) emergeixen com una de les tècniques més innovadores en els sistemes de televisió de següent generació per a abordar tals requeriments. Les NUC redueixen l'espai existent entre les constel·lacions uniformes QAM i el límit teòric de Shannon. Amb estes constel·lacions, els símbols s'optimitzen en ambdós components fase (I) i quadratura (Q) per mitjà de tècniques geomètriques de modelatge del senyal, considerant un nivell senyal a soroll (SNR) concret i un model de canal específic.
Hi ha dos tipus de NUC, unidimensionals i bidimensionals (1D-NUC i 2D-NUC, respectivament). 1D-NUCs mantenen la forma quadrada de les QAM, però permet canviar la distribució entre els símbols en una component concreta, tenint una distància no uniforme entre ells. Estes constel·lacions proporcionen un millor rendiment SNR que QAM, sense cap increment en la complexitat al demapper. 2D-NUC també canvien la forma quadrada de la constel·lació, permetent optimitzar els símbols en ambdós dimensions i per tant obtenint majors guanys en capacitat i menors requeriments en SNR. No obstant això, l'ús de 2D-NUCs implica una major complexitat en el receptor, ja que es necessita un demapper 2D, on les components I i Q no poden ser separades.
En esta tesi s'analitzen les NUC des del punt de vista tant de transmissió com de recepció, utilitzant bé configuracions amb una antena (SISO) o amb múltiples antenes (MIMO). En transmissions SISO, s'han optimitzat 1D-NUCs, per a un rang ampli de distintes SNR i diferents ordes de constel·lació. També s'ha investigat l'optimització de 2D-NUCs rotades. Encara que la complexitat no augmenta, el guany SNR d'estes constel·lacions no és significativa. El major guany per rotació s'obté per a baixos ordes de constel·lació i altes SNR. No obstant això, utilitzant tècniques multi-RF, el guany augmenta dràsticament ja que les components I i Q es transmeten en distints canals RF. En esta tesi, s'ha estudiat el guany multi-RF de les NUC, amb o sense rotació.
En el receptor, s'han identificat dos colls de botella diferents en la implementació. Primer, s'ha analitzat la complexitat en el receptor per a totes les constel·lacions considerades i, posteriorment, es proposen dos algoritmes per a reduir la complexitat amb 2D-NUCs. Ambdós algoritmes redueixen dràsticament el nombre de distàncies. A més, els dos poden combinar-se en un únic demapper. També s'ha explorat la quantització d'estes constel·lacions, ja que tant els valors LLR com les components I/Q es veuen modificats, comparant amb constel·lacions QAM tradicionals. A més, s'ha proposat un algoritme que es basa en l'optimització per a diferents nivells de quantització, per a una NUC concreta.
Igualment, s'ha investigat en detall l'ús de NUCs en MIMO. S'ha inclòs l'optimització en una sola o en dos antenes, l'ús d'un desbalanç de potència, factors de discriminació entre antenes receptores (XPD), o l'ús de distints demappers. Assumint distints valors, s'han obtingut noves constel·lacions multi-antena (MA-NUC) gràcies a un nou procés de re-optimització específic per a MIMO. En el receptor, s'ha modificat l'anàlisi de complexitat al demapper, la qual s'incrementa enormement amb l'ús de 2D-NUCs i sistemes MIMO. Com a alternativa, es proposa una solució basada en l'algoritme Soft-Fixed Sphere Decoding (SFSD) . El principal problema és que estos demappers no funcionen amb 2D-NUCs, ja que necessiten d'un pas addicional en què les components I i Q necessiten separar-se. El mètode proposat quantifica el símbol més pròxim utilitzan / Fuentes Muela, M. (2017). Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84743
|
7 |
Transmit and Receive Signal Processing for MIMO Terrestrial Broadcast SystemsVargas Paredero, David Eduardo 17 June 2016 (has links)
[EN] Multiple-Input Multiple-Output (MIMO) technology in Digital Terrestrial Television (DTT) networks has the potential to increase the spectral efficiency and improve network coverage to cope with the competition of limited spectrum use (e.g., assignment of digital dividend and spectrum demands of mobile broadband), the appearance of new high data rate services (e.g., ultra-high definition TV - UHDTV), and the ubiquity of the content (e.g., fixed, portable, and mobile). It is widely recognised that MIMO can provide multiple benefits such as additional receive power due to array gain, higher resilience against signal outages due to spatial diversity, and higher data rates due to the spatial multiplexing gain of the MIMO channel. These benefits can be achieved without additional transmit power nor additional bandwidth, but normally come at the expense of a higher system complexity at the transmitter and receiver ends. The final system performance gains due to the use of MIMO directly depend on physical characteristics of the propagation environment such as spatial correlation, antenna orientation, and/or power imbalances experienced at the transmit aerials. Additionally, due to complexity constraints and finite-precision arithmetic at the receivers, it is crucial for the overall system performance to carefully design specific signal processing algorithms.
This dissertation focuses on transmit and received signal processing for DTT systems using MIMO-BICM (Bit-Interleaved Coded Modulation) without feedback channel to the transmitter from the receiver terminals. At the transmitter side, this thesis presents investigations on MIMO precoding in DTT systems to overcome system degradations due to different channel conditions. At the receiver side, the focus is given on design and evaluation of practical MIMO-BICM receivers based on quantized information and its impact in both the in-chip memory size and system performance. These investigations are carried within the standardization process of DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) the handheld evolution of DVB-T2 (Terrestrial - Second Generation), and ATSC 3.0 (Advanced Television Systems Committee - Third Generation), which incorporate MIMO-BICM as key technology to overcome the Shannon limit of single antenna communications. Nonetheless, this dissertation employs a generic approach in the design, analysis and evaluations, hence, the results and ideas can be applied to other wireless broadcast communication systems using MIMO-BICM. / [ES] La tecnología de múltiples entradas y múltiples salidas (MIMO) en redes de Televisión Digital Terrestre (TDT) tiene el potencial de incrementar la eficiencia espectral y mejorar la cobertura de red para afrontar las demandas de uso del escaso espectro electromagnético (e.g., designación del dividendo digital y la demanda de espectro por parte de las redes de comunicaciones móviles), la aparición de nuevos contenidos de alta tasa de datos (e.g., ultra-high definition TV - UHDTV) y la ubicuidad del contenido (e.g., fijo, portable y móvil). Es ampliamente reconocido que MIMO puede proporcionar múltiples beneficios como: potencia recibida adicional gracias a las ganancias de array, mayor robustez contra desvanecimientos de la señal gracias a la diversidad espacial y mayores tasas de transmisión gracias a la ganancia por multiplexado del canal MIMO. Estos beneficios se pueden conseguir sin incrementar la potencia transmitida ni el ancho de banda, pero normalmente se obtienen a expensas de una mayor complejidad del sistema tanto en el transmisor como en el receptor. Las ganancias de rendimiento finales debido al uso de MIMO dependen directamente de las características físicas del entorno de propagación como: la correlación entre los canales espaciales, la orientación de las antenas y/o los desbalances de potencia sufridos en las antenas transmisoras. Adicionalmente, debido a restricciones en la complejidad y aritmética de precisión finita en los receptores, es fundamental para el rendimiento global del sistema un diseño cuidadoso de algoritmos específicos de procesado de señal.
Esta tesis doctoral se centra en el procesado de señal, tanto en el transmisor como en el receptor, para sistemas TDT que implementan MIMO-BICM (Bit-Interleaved Coded Modulation) sin canal de retorno hacia el transmisor desde los receptores. En el transmisor esta tesis presenta investigaciones en precoding MIMO en sistemas TDT para superar las degradaciones del sistema debidas a diferentes condiciones del canal. En el receptor se presta especial atención al diseño y evaluación de receptores prácticos MIMO-BICM basados en información cuantificada y a su impacto tanto en la memoria del chip como en el rendimiento del sistema. Estas investigaciones se llevan a cabo en el contexto de estandarización de DVB-NGH (Digital Video Broadcasting - Next Generation Handheld), la evolución portátil de DVB-T2 (Second Generation Terrestrial), y ATSC 3.0 (Advanced Television Systems Commitee - Third Generation) que incorporan MIMO-BICM como clave tecnológica para superar el límite de Shannon para comunicaciones con una única antena. No obstante, esta tesis doctoral emplea un método genérico tanto para el diseño, análisis y evaluación, por lo que los resultados e ideas pueden ser aplicados a otros sistemas de comunicación inalámbricos que empleen MIMO-BICM. / [CA] La tecnologia de múltiples entrades i múltiples eixides (MIMO) en xarxes de Televisió Digital Terrestre (TDT) té el potencial d'incrementar l'eficiència espectral i millorar la cobertura de xarxa per a afrontar les demandes d'ús de l'escàs espectre electromagnètic (e.g., designació del dividend digital i la demanda d'espectre per part de les xarxes de comunicacions mòbils), l'aparició de nous continguts d'alta taxa de dades (e.g., ultra-high deffinition TV - UHDTV) i la ubiqüitat del contingut (e.g., fix, portàtil i mòbil). És àmpliament reconegut que MIMO pot proporcionar múltiples beneficis com: potència rebuda addicional gràcies als guanys de array, major robustesa contra esvaïments del senyal gràcies a la diversitat espacial i majors taxes de transmissió gràcies al guany per multiplexat del canal MIMO. Aquests beneficis es poden aconseguir sense incrementar la potència transmesa ni l'ample de banda, però normalment s'obtenen a costa d'una major complexitat del sistema tant en el transmissor com en el receptor. Els guanys de rendiment finals a causa de l'ús de MIMO depenen directament de les característiques físiques de l'entorn de propagació com: la correlació entre els canals espacials, l'orientació de les antenes, i/o els desequilibris de potència patits en les antenes transmissores. Addicionalment, a causa de restriccions en la complexitat i aritmètica de precisió finita en els receptors, és fonamental per al rendiment global del sistema un disseny acurat d'algorismes específics de processament de senyal.
Aquesta tesi doctoral se centra en el processament de senyal tant en el transmissor com en el receptor per a sistemes TDT que implementen MIMO-BICM (Bit-Interleaved Coded Modulation) sense canal de tornada cap al transmissor des dels receptors. En el transmissor aquesta tesi presenta recerques en precoding MIMO en sistemes TDT per a superar les degradacions del sistema degudes a diferents condicions del canal. En el receptor es presta especial atenció al disseny i avaluació de receptors pràctics MIMO-BICM basats en informació quantificada i al seu impacte tant en la memòria del xip com en el rendiment del sistema. Aquestes recerques es duen a terme en el context d'estandardització de DVB-NGH (Digital Video Broadcasting - Next Generation Handheld), l'evolució portàtil de DVB-T2 (Second Generation Terrestrial), i ATSC 3.0 (Advanced Television Systems Commitee - Third Generation) que incorporen MIMO-BICM com a clau tecnològica per a superar el límit de Shannon per a comunicacions amb una única antena. No obstant açò, aquesta tesi doctoral empra un mètode genèric tant per al disseny, anàlisi i avaluació, per la qual cosa els resultats i idees poden ser aplicats a altres sistemes de comunicació sense fils que empren MIMO-BICM. / Vargas Paredero, DE. (2016). Transmit and Receive Signal Processing for MIMO Terrestrial Broadcast Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/66081 / Premios Extraordinarios de tesis doctorales
|
Page generated in 0.0632 seconds