Spelling suggestions: "subject:"black scholes"" "subject:"black choles""
1 |
Hedging strategies for financial derivativesElder, John January 2002 (has links)
No description available.
|
2 |
Derivate für FX-AbsicherungenFischbach, Pascal. January 2008 (has links) (PDF)
Bachelor-Arbeit Univ. St. Gallen, 2008.
|
3 |
Probabilistic approach to contingent claims analysisRabeau, Nicholas Marc January 1996 (has links)
No description available.
|
4 |
Local and Stochastic Volatility Models: An Investigation into the Pricing of Exotic Equity OptionsMajmin, Lisa 27 October 2006 (has links)
Faculty of Science;
School of Computational and Applied Maths;
MSC Thesis / The assumption of constant volatility as an input parameter into the Black-Scholes option pricing formula is deemed primitive and highly erroneous when one considers the terminal distribution of the log-returns of the underlying process. To account for the `fat tails' of the distribution, we consider
both local and stochastic volatility option pricing models. Each class of models, the former being a special case of the latter, gives rise to a parametrization of the skew, which may or may not re°ect the correct dynamics of the skew. We investigate a select few from each class and derive the results presented in the corresponding papers. We select one from each class, namely the implied trinomial tree (Derman, Kani & Chriss 1996) and the SABR model (Hagan, Kumar, Lesniewski &
Woodward 2002), and calibrate to the implied skew for SAFEX futures. We also obtain prices for both vanilla and exotic equity index options and compare the two approaches.
|
5 |
Black-Scholes : En prissättningsmodell för optionerLindström, Linnea January 2010 (has links)
<p>This paper aims to derive the Black-Scholes equation for readers without advanced knowledge in finance and mathematics. To succeed, this paper contains a theoretical chapter in which concepts such as options, interest rate, differential equations and stochastic variable are explained. This paper also presents the theory of stochastic processes such as the Wiener process and Ito process. In the chapter on the Black-Scholes model the Ito process is used to describe price of shares and with the help of Ito's lemma Black-Scholes equation can be derived. In the paper, assumptions are listed that apply to the Black-Scholes model and then uses the Black-Scholes equation to calculate the price of a European call option. Finally, exotic options are described and also how options can be used to reduce risks.</p> / <p>Uppsatsens mål är att härleda Black-Scholes ekvation för läsare utan avancerade kunskaper inom finansiering och matematik. För att lyckas med detta innehåller uppsatsen ett teorikapitel där begrepp så som optioner, ränta, differentialekvation och stokastisk variabel förklaras. Där presenteras även teorier för stokastiska processer så som Wienerprocessen och Itoprocessen. I kapitlet om Black-Scholes modell används Itoprocessen för att beskriva aktiepriset och med hjälp av Itos lemma härleds Black-Scholes ekvation. Uppsatsen ställer upp antaganden som gäller för Black-Scholes modell och använder sedan Black-Scholes ekvation för att beräkna priset på en europeisk köpoption. Avslutningsvis beskrivs exotiska optioner samt hur optioner kan användas för att reducera risker.</p>
|
6 |
Black-Scholes : En prissättningsmodell för optionerLindström, Linnea January 2010 (has links)
This paper aims to derive the Black-Scholes equation for readers without advanced knowledge in finance and mathematics. To succeed, this paper contains a theoretical chapter in which concepts such as options, interest rate, differential equations and stochastic variable are explained. This paper also presents the theory of stochastic processes such as the Wiener process and Ito process. In the chapter on the Black-Scholes model the Ito process is used to describe price of shares and with the help of Ito's lemma Black-Scholes equation can be derived. In the paper, assumptions are listed that apply to the Black-Scholes model and then uses the Black-Scholes equation to calculate the price of a European call option. Finally, exotic options are described and also how options can be used to reduce risks. / Uppsatsens mål är att härleda Black-Scholes ekvation för läsare utan avancerade kunskaper inom finansiering och matematik. För att lyckas med detta innehåller uppsatsen ett teorikapitel där begrepp så som optioner, ränta, differentialekvation och stokastisk variabel förklaras. Där presenteras även teorier för stokastiska processer så som Wienerprocessen och Itoprocessen. I kapitlet om Black-Scholes modell används Itoprocessen för att beskriva aktiepriset och med hjälp av Itos lemma härleds Black-Scholes ekvation. Uppsatsen ställer upp antaganden som gäller för Black-Scholes modell och använder sedan Black-Scholes ekvation för att beräkna priset på en europeisk köpoption. Avslutningsvis beskrivs exotiska optioner samt hur optioner kan användas för att reducera risker.
|
7 |
Semigroup methods in financeEinemann, Michael, January 2009 (has links)
Ulm, Univ., Diss., 2009.
|
8 |
Lattice approximations for Black-Scholes type models in Option PricingKarlén, Anne, Nohrouzian, Hossein January 2013 (has links)
This thesis studies binomial and trinomial lattice approximations in Black-Scholes type option pricing models. Also, it covers the basics of these models, derivations of model parameters by several methods under different kinds of distributions. Furthermore, the convergence of binomial model to normal distribution, Geometric Brownian Motion and Black-Scholes model isdiscussed. Finally, the connections and interrelations between discrete random variables under the Lattice approach and continuous random variables under models which follow Geometric Brownian Motion are discussed, compared and contrasted.
|
9 |
Análisis de la capacidad predictiva del modelo de Black and ScholesBanfi del Río, Pablo, Correa Finsterbusch, Maximiliano, Romero Diez, Ricardo, Wechsler Jensen, Ricardo January 2003 (has links)
Seminario para optar al título de Ingeniero Comercial / El objetivo de este trabajo es analizar la capacidad predictiva del modelo desarrollado por Black y Scholes. Para este propósito se testeó la capacidad de diversos modelos autoregresivos, además de un modelo multivariable y otro ingenuo. Las conclusiones se detallan a nivel de acción, modelo, sector y vencimiento. El modelo que obtuvo los mejores resultados a nivel promedio fue el Arima recursivo seguido por el Arima rolling. Durante el desarrollo del trabajo surgieron objetivos secundarios, uno de estos fue verificar si realmente el mercado sigue o no a B and S. Para esto se compararon los precios calculados por la fórmula con los precios observados en el mercado y se encontró que en un 95% de los casos, el mercado transó los activos a un precio superior al arrojado por la formula. Por esto no somos capaces de afirmar si el mercado sigue o no a B and S, pero es muy probable que su valor sea tomado en cuenta pero complementado por otras variables que el modelo no considera, como podrían ser las expectativas, el valor de la cobertura por riesgo, o la estabilidad económica y política del país. Por último buscamos un modelo que tuviera resultados probados para una determinada acción y encontramos que el modelo multivariado con las variables Dow (-1), Dow (-4), Dow (-5), Nasdaq (-1), Klac (-1), Klac (-2) y Error (-2) es el que había arrojado la mejor predicción para la acción Klac el mes anterior. Entonces aplicamos los modelos anteriores en conjunto con este a Klac y comparamos los resultados. La idea fue comprobar si es que modelos que fueron precisos en un pasado cercano, lo siguen siendo con el transcurso del tiempo. Los nuevos resultados indicaron que a medida que pasa el tiempo y cambian las condiciones económicas del mercado, los modelos pierden precisión. Finalmente el modelo con mejores resultados fue el modelo Multivariado rolling. Corroboramos que el mercado es complejo, dinámico y que aprende. En ocasiones modelos tan simples como el ingenuo obtuvieron mejores resultados que los modelos más complejos, lo que indica que hay cuotas de azar, expectativas y otros factores aleatorios que hacen muy difícil predecir el comportamiento del mercado y superar su rendimiento.
|
10 |
Barrier Option Pricing under SABR Model Using Monte Carlo MethodsHu, Junling 02 May 2013 (has links)
The project investigates the prices of barrier options from the constant underlying volatility in the Black-Scholes model to stochastic volatility model in SABR framework. The constant volatility assumption in derivative pricing is not able to capture the dynamics of volatility. In order to resolve the shortcomings of the Black-Scholes model, it becomes necessary to find a model that reproduces the smile effect of the volatility. To model the volatility more accurately, we look into the recently developed SABR model which is widely used by practitioners in the financial industry. Pricing a barrier option whose payoff to be path dependent intrigued us to find a proper numerical method to approximate its price. We discuss the basic sampling methods of Monte Carlo and several popular variance reduction techniques. Then, we apply Monte Carlo methods to simulate the price of the down-and-out put barrier options under the Black-Scholes model and the SABR model as well as compare the features of these two models.
|
Page generated in 0.1082 seconds