• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind-turbine wake flows - Effects of boundary layers and periodic disturbances

Odemark, Ylva January 2014 (has links)
The increased fatigue loads and decreased power output of a wind turbine placed in the wake of another turbine is a well-known problem when building new wind-power farms and a subject of intensive research. These problems are caused by the velocity gradients and high turbulence levels present in the wake of a turbine. In order to better estimate the total power output and life time of a wind-power farm, knowledge about the development and stability of wind-turbine wakes is crucial. In the present thesis, the flow field around small-scale model wind turbines has been investigated experimentally in two wind tunnels. The flow velocity was measured with both hot-wire anemometry and particle image velocimetry. To monitor the turbine performance, the rotational frequency, the power output and the total drag force on the turbine were also measured. The power and thrust coefficients for different tip-speed ratios were calculated and compared to the blade element momentum method, with a reasonable agreement. The same method was also used to design and manufacture new turbine blades, which gave an estimate of the distribution of the lift and drag forces along the blades. The influence of the inlet conditions on the turbine and the wake properties was studied by subjecting the turbine to both uniform in flow and different types of boundary layer in flows. In order to study the stability and development of the tip vortices shed from the turbine blades, a new experimental setup for phase-locked measurements was constructed. The setup made it possible to introduce perturbations of different frequencies and amplitudes, located in the rear part of the nacelle. With a newly developed method, it was possible to characterize the vortices and follow their development downstream, using only the streamwise velocity component. Measurements were also performed on porous discs placed in different configurations. The results highlighted the importance of turbine spacings. Both the measurements on the turbine and the discs were also used to compare with large eddy simulations using the actuator disc method. The simulations managed to predict the mean velocity fairly well in both cases, while larger discrepancies were seen in the turbulence intensity. / <p>QC 20140424</p>
2

Numerical computations of wind turbine wakes and wake interaction : Optimization and control

Nilsson, Karl January 2012 (has links)
In the present thesis the wake flow behind wind turbines is analyzed numerically using large-eddy simulations. The wind turbine rotors are modeled by using either the actuator disc method or the actuator line method in which the blades are represented by body forces computed with airfoil data. Using these models, the boundary layers of the turbine blades are not resolved and most of the computational power is preserved to simulate the wake flow. The actuator disc method is used for the wake interaction studies of the Lillgrund wind farm. In this study the power production is simulated for two different wind directions and compared to measurements. A grid sensitivity study and a turbulence intensity study are also performed. As a last step the front row turbines are derated in an attempt to increase the total production of the farm. The results show that it is important to impose atmospheric conditions at the inlet in the simulations, otherwise production will be unrealistically low for some turbines in the farm. The agreement between the simulated and measured power is very good. The study based on derating the front row turbines does not show any positive increase on the farm production. The actuator line method is used for near wake analysis of the MEXICO rotor. In this study the near wake is simulated for five different flow cases and compared with particle image velocimetry (PIV) measurements. The analysis is performed by comparing size and circulation of the tip vortices, the radial and streamwise velocity distributions, the spatial expansion of the wake and the axial induction factor. The simulations and measurements generally are in agreement. In some cases, however, the measurements are affected by tunnel effects which are not captured in the simulations. In connection to the actuator disc method a power control strategy for operating conditions below rated power is implemented and tested. The strategy is first validated using an in-house developed blade element momentum code and then is implemented in the actuator disc method used in the EllipSys3D code. The initial tests show that the strategy responds as expected when changing the moment of inertia of the rotor and when varying the inlet conditions. Results from the implementation of the strategy in the actuator disc method in EllipSys3D show that the turbine adapts to the conditions it is operating in by changing its rotational velocity and power output when the inlet conditions are varied. / <p>QC 20130111</p>

Page generated in 0.0905 seconds