Spelling suggestions: "subject:"blade tipo"" "subject:"clade tipo""
1 |
Development of blade tip timing techniques in turbo machineryJousselin, Olivier January 2013 (has links)
In the current gas turbine market, the traditional design-test-redesign loop is not a viable solution to deploy new products within short timeframes. Hence, to keep the amount of testing to an absolute minimum, theoretical simulation tools like Finite Element Modelling (FEM) have become a driving force in the design of blades to predict the dynamic behaviour of compressor and turbine assemblies in high-speed and unsteady flows. The predictions from these simulation tools need to be supported and validated by measurements. For the past five years, Rolls-Royce Blade Tip Timing (BTT) technology has been replacing rotating Strain Gauge systems to measure the vibration of compressor blades, reducing development times and costs of new aero engine programmes. The overall aim of the present thesis is to progress the BTT technology to be applied to aero engine turbine modules. To this end, the two main objectives of this project are: i. To improve the current validated Rolls-Royce BTT extraction techniques, through the development of novel algorithms for single/multiple asynchronous and responses. ii. To validate the improved extraction using simulated and real engine test data in order to bring the Turbine BTT technology to a Rolls-Royce Technology Readiness Level (TRL) of 4 (i.e. component and/or partial system validation in laboratory environment). The methodology adopted for the development of the novel algorithms is entirely based on matrix algebra and makes extensive use of singular value decomposition as a means for assessing the degree optimisation achieved through various novel manipulations of the input (probe) raw data. The principle contributions of this thesis are threefold: i. The development of new BTT matrix-based models for single/multiple non-integral and integral engine order responses that removed certain pre-processing assumptions required by the current method. ii. The development of BTT technology to operate under the constraint of having equally spaced probes, which is unavoidable in turbines and renders current BTT methods unusable for turbine applications. iii. The development of methods for extracting measurement uncertainty and signal to noise ratios that are based solely on the raw data, without reliance on simulated reference data. Following the verification and validation of the new processing algorithms against simulated data and against validated software with numerous examples of actual engine test data, a Rolls-Royce's Research & Technology (R&T) Critical Capability Acquisition and Capability Readiness (CCAR) review has accredited the novel techniques with a TRL of 4.
|
2 |
An investigation into turbine blade tip leakage flows at high speedsSaleh, Zainab Jabbar January 2015 (has links)
This investigation studies the leakage flows over the high pressure turbine blade tip at high speed flow conditions. There is an unavoidable gap between the un-shrouded blade tip and the engine casing in a turbine stage, where the pressure difference between the pressure and the suction surfaces of the blade gives rise to the development of leakage flows through this gap. These flows contribute to about one third of the aerodynamic losses in a turbine stage. In addition they expose the blade tip to a very high temperature and result in thermal damages which reduce the blade‟s operational life. Therefore any improvement on the tip design to reduce these flows has a significant impact on the engine‟s efficiency and turbine blade‟s operational life. At the engine operational condition, the leakage flows over the high pressure turbine blade tip are mostly transonic. On the other hand literature survey has shown that most of the studies on the tip leakage flows have been performed at low speed conditions and there are only a few experimental works on the transonic tip flows. This project aims to explore the tip leakage flows at high speed condition which is the real engine condition, both experimentally and computationally and establish a comprehensive understanding of these flows on different tip geometries. The effect of tip geometry was studied using the flat tip and the cavity tip models and the effect of in-service burnout on these two tip models was established using the radius-edge flat tip and the radius-edge cavity tip models. The experimental work was carried out in the transonic wind tunnel of Queen Mary University of London and the computational simulations were performed using RANS and URANS. As the flow approached each tip model it turned and accelerated around its leading edge in the same way as the flow turns around the leading edge of an aerofoil. In the case of the tip models with sharp edges the tip flow separated at the inlet to the tip gap. For the flat tip model the flow reattachment occurred further downstream whereas in the case of the cavity tip model the length of the pressure side rim was not sufficient for the reattachment to occur and the separated flow left the rim as a free shear layer. The cavity tip model was found to have a smaller effective tip gap and hence smaller discharge coefficient in comparison to the flat tip model. For the radius-edge tip models, no separation occurred at the inlet to the tip gap and the effective tip gap was found to be the same as the geometrical tip gap. Therefore it was concluded that the tip model with radius-edges had a larger effective tip gap and hence a greater discharge coefficient than the tip geometry with sharp edges. It was observed that in the case of the supersonic tip leakage flows, decreasing the pressure ratio PR (i.e. the ratio of the static pressure at the tip gap exit to the stagnation pressure at the inlet to the tip gap) increased the discharge coefficient Cd for the tip models with sharp edges but it decreased the Cd value in the case of the tip models with radius edges. The cavity tip model with sharp edges was found to have the smallest discharge coefficient and thus the best performance in reducing the tip leakage flows as compared to all the other tip models studied in this investigation.
|
3 |
Experimental Study of Gas Turbine Blade Film Cooling and Heat TransferNarzary, Diganta P. 2009 August 1900 (has links)
Modern gas turbine engines require higher turbine-entry gas temperature to improve their
thermal efficiency and thereby their performance. A major accompanying concern is the heat-up
of the turbine components which are already subject to high thermal and mechanical stresses.
This heat-up can be reduced by: (i) applying thermal barrier coating (TBC) on the surface, and
(ii) providing coolant to the surface by injecting secondary air discharged from the compressor.
However, as the bleeding off of compressor discharge air exacts a penalty on engine performance,
the cooling functions must be accomplished with the smallest possible secondary air injection.
This necessitates a detailed and systematic study of the various flow and geometrical parameters
that may have a bearing on the cooling pattern.
In the present study, experiments were performed in three regions of a non-rotating gas
turbine blade cascade: blade platform, blade span, and blade tip. The blade platform and blade
span studies were carried out on a high pressure turbine rotor blade cascade in medium flow
conditions. Film-cooling effectiveness or degree of cooling was assessed in terms of cooling hole
geometry, blowing ratio, freestream turbulence, coolant-to-mainstream density ratio, purge flow
rate, upstream vortex for blade platform cooling and blowing ratio, and upstream vortex for blade
span cooling. The blade tip study was performed in a blow-down flow loop in a transonic flow
environment. The degree of cooling was assessed in terms of blowing ratio and tip clearance.
Limited heat transfer coefficient measurements were also carried out. Mainstream pressure loss
was also measured for blade platform and blade tip film-cooling with the help of pitot-static
probes. The pressure sensitive paint (PSP) and temperature sensitive paint (TSP) techniques were
used for measuring film-cooling effectiveness whereas for heat transfer coefficient measurement,
temperature sensitive paint (TSP) technique was employed.
Results indicated that the blade platform cooling requires a combination of upstream purge
flow and downstream discrete film-cooling holes to cool the entire platform. The shaped cooling
holes provided wider film coverage and higher film-cooling effectiveness than the cylindrical
holes while also creating lesser mainstream pressure losses. Higher coolant-to-mainstream density ratio resulted in higher effectiveness levels from the cooling holes. On the blade span, at
any given blowing ratio, the suction side showed better coolant coverage than the pressure side
even though the former had two fewer rows of holes. Film-cooling effectiveness increased with
blowing ratio on both sides of the blade. Whereas the pressure side effectiveness continued to
increase with blowing ratio, the increase in suction side effectiveness slowed down at higher
blowing ratios (M=0.9 and 1.2). Upstream wake had a detrimental effect on film coverage. 0%
and 25% wake phase positions significantly decreased film-cooling effectiveness magnitude.
Comparison between the compound shaped hole and the compound cylindrical hole design
showed higher effectiveness values for shaped holes on the suction side. The cylindrical holes
performed marginally better in the curved portion of the pressure side. Finally, the concept tip
proved to be better than the baseline tip in terms of reducing mainstream flow leakage and
mainstream pressure loss. The film-cooling effectiveness on the concept blade increased with
increasing blowing ratio and tip gap. However, the film-coverage on the leading tip portion was
almost negligible.
|
4 |
Comparison of the Thermal Performance of Several Tip Cooling Designs for a Turbine BladeChristophel, Jesse Reuben 08 October 2003 (has links)
Gas turbine blades are subject to harsh operating conditions that require innovative cooling techniques to insure reliable operation of parts. Film-cooling and internal cooling techniques can prolong blade life and allow for higher engine temperatures. This study examines several unique methods of cooling the turbine blade tip. The first method employs holes placed directly in the tip which inject coolant onto the blade tip. The second and third methods used holes placed on the pressure side of a blade near the tip representative of two different manufacturing techniques. The fourth method is a novel cooling technique called a microcircuit, which combines internal convection and injection from the pressure side near a turbine blade tip. Wind tunnel tests are used to observe how effectively these designs cool the tip through adiabatic effectiveness measurements and convective heat transfer measurements. Tip gap size and blowing ratio are varied for the different tip cooling configurations.
Results from these studies show that coolant injection from either the tip surface or from the pressure side near the tip are viable cooling methods. All of these studies showed better cooling could be achieved at small tip gaps than large tip gaps. The results in which the two different manufacturing techniques were compared indicated that the technique producing more of a diffused hole provided better cooling on the tip.
When comparing the thermal performance of all the cooling schemes investigated, the added benefit of the internal convective cooling shows that the microcircuit outperforms the other designs. / Master of Science
|
5 |
Process monitoring of turbine blades : Monitoring of blade tip clearance using eddy current sensorsAndersson, Hampus January 2022 (has links)
This thesis has been a collaboration between the Royal Institute of Technology (KTH) and Siemens Energy which invest in the research facility at KTH. The objective was to investigate the use of eddy current sensors in real-time monitoring of turbine blades. The main focus has been on finding a use for blade tip clearance and a correlation for the insufficient sampling that eddy current sensors suffer from. At the same time, it was desirable to also investigate the use of the same sampled data for blade tip vibration. The research on eddy current sensors is important for their relative low price compared to other instruments and how resistance it is to contamination found in turbines, enabling real-time monitoring. The testing has been conducted at the Energy Technology department which utilizes a scaled version of a full-sized turbine to investigate performance measurements. It is scaled to have the same stage loading for both blisks investigated. Two different blisks have been used for this project, one with thicher but fewer blades and one with thinner but more blades. On each blisk different types of sampling have been done in order to capture suitable data for both tip timing and tip vibration. This resulted in sampling with static RPM and sweeps over certain regions as well as full sweeps from design RPM to standstill. A computer model was developed to evaluate the sampled data. In the model, the sample points were interpolated to compensate for the insufficient sampling, enabling tip gap measurements. Measurements and calibration were done on the blisks for the possibility of using a compensation curve in order to be able to compensate for the signal error. The results show that eddy current sensors and setup used here have a good capability of capturing the tip clearance with precision in the range of hundreds of millimeter on the blisk with thicker blades and up to a certain rotational speed on the blisk with thinner blades. In regards to the tip vibration, eddy current system had problems capturing the time of arrival with sufficient precision correctly. / Den här uppsatsen har varit ett sammarbete mellan Kunglig Tekniska Högskolan (KTH) och Simens Energy vilka investerar i forskningen som bedrivs på KTH. Målet var att undersöka användningen av eddy current sensors för övervakning av turbinbliskar. Huvudfokus har varit att hitta användning av sensorerna för topspelsmätningar och ta fram en korregering av den otillräckliga insamlingen av data som eddy current sensorer lider av. Samtidigt var det önskvärt att samtidigt undersöka samma insamlade data för att utvärdera bladvibrationer. Forskning på eddy current sensorer är viktig för dess relativt låga pris jämfört med andra alternativ samt att de dess höga motståndskraft mot smuts som ofta finns i miljöer där turbiner används. Testerna har gjorts på instutitionen för Energiteknik vilka använder en nedskalad versioner av den verkliga storleken på turbinen för att utföra mätningar på. Två olika bliskar har använts för detta projekt, en med grövre men färre blad samt en med tunnare och fler blad. Stegbelastningen är dock samma för båda. På båda bladen har olika typer mätningar gjorts för att kunna fånga passade data för båda topspelsmätningar och bladvibrationer. Detta gav data med statiskt varvtal, långsamma svepningar över specialla regioner och svepningar över från designvarvtal ner till stillastående. En datormodell har utvecklats för utvärdera insamlade data. I modellen sker en interpolering som kompenserar för de låga antalet samplade punkter på bladet. Mätnigar och kalibreringar är gjorda på bliskarna för att skapa en kompenseringskurva åt signalfel i utdatan. Resultatet visar att eddy current systemet har goda möjligheter att visa rätt toppspel med god precition för blisken med tjocka blad och upp till ett visst varvtal på den med tunnare blad. När det kommer till bladvibrationer hade sensorerna och datormodellen svårt att fånga rätt ankomst tid för bladet med tillräckligt hög precision.
|
6 |
An Evaluation Testbed for Alternative Wind Turbine Blade Tip DesignsGertz, Drew Patrick January 2011 (has links)
The majority of present-day horizontal axis wind turbine blade tips are simple
designs based on historical trends. There is, however, some evidence that varying the
design of the tip can result in significant changes in performance characteristics such
as power output, noise, and structural loading. Very few studies have tested this idea
on an actual rotating blade and there is much to be investigated. Thus, a project was
devised to examine experimentally the effect of various tip designs on an operational
rotating wind turbine rotor.
A tapered, twisted blade 1.6 m in length was custom designed for use in the UW
Wind Energy Research Facility using the blade element momentum (BEM) method.
A coupling mechanism was designed such that the outer 10% of each blade could be
exchanged to evaluate the effect of different tip designs. A set of three blades was
fabricated out of fibre-reinforced plastic, while the tips were machined out of maple
wood on a CNC milling machine.
The blade was evaluated with a standard rectangular tip to establish baseline
performance against which to compare the alternative tip configurations. The three-bladed
rotor was tested at shaft speeds from 100 rpm to 240 rpm in wind speeds
up to the facility maximum of 11.1 m/s. The rotor was found to have a maximum
power coefficient of 0.42 at a tip speed ratio of 5.3 and a 1.45 kW rated power at a
wind speed of 11 m/s. The performance was compared to predictions made using the
BEM method with airfoil data generated using a modified Viterna method and the
Aerodas method. While the Aerodas data was capable of predicting the power fairly
accurately from 5 m/s to 10 m/s, the modified Viterna method predicted the entire
curve much more accurately.
Two winglet designs were also tested. The first (called Maniaci) was designed
by David Maniaci of Pennsylvania State University and the other (called Gertz) was
designed by the author. Both winglets were found to augment the power by roughly
5% at wind speeds between 6.5 m/s and 9.5 m/s, while performance was decreased
above and below this speed range. It was calculated that the annual energy production
could be increased using the Maniaci and Gertz winglets by 2.3% and 3%, respectively.
Considering the preliminary nature of the study the results are encouraging and it is
likely that more optimal winglet designs could be designed and evaluated using the
same method. More generally, this study proved that the blades with interchangeable
tips are capable of being used as an evaluation testbed for alternative wind turbine
blade tip designs.
|
7 |
Investigations of flow and film cooling on turbine blade edge regionsYang, Huitao 30 October 2006 (has links)
The inlet temperature of modern gas turbine engines has been increased to achieve higher thermal
efficiency and increased output. The blade edge regions, including the blade tip, the leading edge, and the
platform, are exposed to the most extreme heat loads, and therefore, must be adequately cooled to
maintain safety.
For the blade tip, there is tip leakage flow due to the pressure gradient across the tip. This leakage
flow not only reduces the blade aerodynamic performance, but also yields a high heat load due to the thin
boundary layer and high speed. Various tip configurations, such as plane tip, double side squealer tip, and
single suction side squealer tip, have been studied to find which one is the best configuration to reduce the
tip leakage flow and the heat load. In addition to the flow and heat transfer on the blade tip, film cooling
with various arrangements, including camber line, upstream, and two row configurations, have been
studied. Besides these cases of low inlet/outlet pressure ratio, low temperature, non-rotating, the high
inlet/outlet pressure ratio, high temperature, and rotating cases have been investigated, since they are
closer to real turbine working conditions.
The leading edge of the rotor blade experiences high heat transfer because of the stagnation flow.
Film cooling on the rotor leading edge in a 1-1/2 turbine stage has been numerically studied for the design
and off-design conditions. Simulations find that the increasing rotating speed shifts the stagnation line
from the pressure side, to the leading edge and the suction side, while film cooling protection moves in the
reverse direction with decreasing cooling effectiveness. Film cooling brings a high unsteady intensity of
the heat transfer coefficient, especially on the suction side. The unsteady intensity of film cooling
effectiveness is higher than that of the heat transfer coefficient.
The film cooling on the rotor platform has gained significant attention due to the usage of low-aspect
ratio and low-solidity turbine designs. Film cooling and its heat transfer are strongly influenced by the
secondary flow of the end-wall and the stator-rotor interaction. Numerical predictions have been
performed for the film cooling on the rotating platform of a whole turbine stage. The design conditions
yield a high cooling effectiveness and decrease the cooling effectiveness unsteady intensity, while the high rpm condition dramatically reduces the film cooling effectiveness. High purge flow rates provide a better
cooling protection. In addition, the impact of the turbine work process on film cooling effectiveness and
heat transfer coefficient has been investigated. The overall cooling effectiveness shows a higher value than
the adiabatic effectiveness does.
|
8 |
Film cooling effectiveness measurements on rotating and non-rotating turbine componentsAhn, Jaeyong 25 April 2007 (has links)
Detailed film cooling effectiveness distributions were measured on the stationary
blade tip and on the leading edge region of a rotating blade using a Pressure Sensitive
Paint technique. Air and nitrogen gas were used as the film cooling gases and the
oxygen concentration distribution for each case was measured. The film cooling
effectiveness information was obtained from the difference of the oxygen concentration
between air and nitrogen gas cases by applying the mass transfer analogy. In the case of
the stationary blade tip, plane tip and squealer tip blades were used while the film
cooling holes were located (a) along the camber line on the tip or (b) along the span of
the pressure side. The average blowing ratio of the cooling gas was controlled to be 0.5,
1.0, and 2.0. Tests were conducted in a five-bladed linear cascade with a blow down
facility. The free stream Reynolds number, based on the axial chord length and the exit
velocity, was 1,100,000 and the inlet and the exit Mach number were 0.25 and 0.59,
respectively. Turbulence intensity level at the cascade inlet was 9.7%. All
measurements were made at three different tip gap clearances of 1%, 1.5%, and 2.5% of
blade span. Results show that the locations of the film cooling holes and the presence
of squealer have significant effects on surface static pressure and film-cooling effectiveness. Same technique was applied to the rotating turbine blade leading edge
region. Tests were conducted on the first stage rotor of a 3-stage axial turbine. The
Reynolds number based on the axial chord length and the exit velocity was 200,000 and
the total to exit pressure ratio was 1.12 for the first rotor. The effects of the rotational
speed and the blowing ratio were studied. The rotational speed was controlled to be
2400, 2550, and 3000 rpm and the blowing ratio was 0.5, 1.0, and 2.0. Two different
film cooling hole geometries were used; 2-row and 3-row film cooling holes. Results
show that the rotational speed changes the directions of the coolant flows. Blowing
ratio also changes the distributions of the coolant flows. The results of this study will
be helpful in understanding the physical phenomena regarding the film injection and
designing more efficient turbine blades.
|
9 |
An Evaluation Testbed for Alternative Wind Turbine Blade Tip DesignsGertz, Drew Patrick January 2011 (has links)
The majority of present-day horizontal axis wind turbine blade tips are simple
designs based on historical trends. There is, however, some evidence that varying the
design of the tip can result in significant changes in performance characteristics such
as power output, noise, and structural loading. Very few studies have tested this idea
on an actual rotating blade and there is much to be investigated. Thus, a project was
devised to examine experimentally the effect of various tip designs on an operational
rotating wind turbine rotor.
A tapered, twisted blade 1.6 m in length was custom designed for use in the UW
Wind Energy Research Facility using the blade element momentum (BEM) method.
A coupling mechanism was designed such that the outer 10% of each blade could be
exchanged to evaluate the effect of different tip designs. A set of three blades was
fabricated out of fibre-reinforced plastic, while the tips were machined out of maple
wood on a CNC milling machine.
The blade was evaluated with a standard rectangular tip to establish baseline
performance against which to compare the alternative tip configurations. The three-bladed
rotor was tested at shaft speeds from 100 rpm to 240 rpm in wind speeds
up to the facility maximum of 11.1 m/s. The rotor was found to have a maximum
power coefficient of 0.42 at a tip speed ratio of 5.3 and a 1.45 kW rated power at a
wind speed of 11 m/s. The performance was compared to predictions made using the
BEM method with airfoil data generated using a modified Viterna method and the
Aerodas method. While the Aerodas data was capable of predicting the power fairly
accurately from 5 m/s to 10 m/s, the modified Viterna method predicted the entire
curve much more accurately.
Two winglet designs were also tested. The first (called Maniaci) was designed
by David Maniaci of Pennsylvania State University and the other (called Gertz) was
designed by the author. Both winglets were found to augment the power by roughly
5% at wind speeds between 6.5 m/s and 9.5 m/s, while performance was decreased
above and below this speed range. It was calculated that the annual energy production
could be increased using the Maniaci and Gertz winglets by 2.3% and 3%, respectively.
Considering the preliminary nature of the study the results are encouraging and it is
likely that more optimal winglet designs could be designed and evaluated using the
same method. More generally, this study proved that the blades with interchangeable
tips are capable of being used as an evaluation testbed for alternative wind turbine
blade tip designs.
|
10 |
A real-time hybrid method based on blade tip timing for diagnostics and prognostics of cracks in turbomachine rotor bladesEllis, Brian January 2019 (has links)
This dissertation proposes hybrid models for (i) diagnosis and (ii) remaining useful life estimation of a single fatigue crack in a low-pressure turbine blade. The proposed hybrid methods consist of physics-based methods and data-driven methods.
In this dissertation, blade tip timing is used to measure the relative tip displacement of a rotor blade. The natural frequency of the blade is determined by detecting the critical speeds of the blade using a newly derived least squares spectral analysis method. The method shares its origin from the Lomb-Scargle periodogram and can detect resonance frequencies in the blade’s displacement while the rotor is in operation. A Campbell diagram is then used to convert the critical speed into a natural frequency. Two kinds of shaft transients are considered, a run-up run-down crossing the same critical speed, is used to test the new method. This dissertation shows that the relative displacement of the blade tip is comparable to those simulated from an analytical single degree of freedom model. It is also shown that the newly proposed resonance detection method estimates the natural frequency of the blade to a high degree of accuracy when compared to the measurements from a modal impact hammer test.
The natural frequency obtained from the real time measurement is then used in a pre-constructed hybrid diagnostics model. The diagnostics model provides a probability density function estimation of the surface crack length given the measured natural frequency. A Gaussian Process Regression model is trained on data collected during experiments and finite element simulations of a fatigue crack in the blade.
The final part of this dissertation is a sequential inference model for improving the estimation of the crack length and the prediction of the crack growth. The suggested model uses an unscented Kalman filter that improves estimations of the crack length and the rate of crack growth from Paris’ Law coefficients. The model is updated each time a diagnosis is performed on the blade. The RUL of the blade is then determined from an integration of Paris’s Law given the uncertainty estimates of the current damage in the blade. The result of the algorithm is an estimation of the remaining number of cycles to failure. The algorithm is shown to improve the overall estimation of the RUL; however, it is suggested that future work looks at the convergence rate of the method. / Dissertation (MEng)--University of Pretoria, 2019. / Eskom Power Plant Engineering Institute (EPPEI) / Mechanical and Aeronautical Engineering / MEng / Unrestricted
|
Page generated in 0.0564 seconds