• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 123
  • 37
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 406
  • 165
  • 129
  • 69
  • 51
  • 45
  • 42
  • 38
  • 35
  • 34
  • 32
  • 31
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Blendas de policarbonato e polietileno linear de baixa densidade : processamento e compatibilização / Blends of polycarbonate and linear low density polyethylene, processing and compatibilization

Goos, Silvia Carla Haither 30 August 2005 (has links)
Orientador: Maria Isabel Felisberti / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-05T10:36:42Z (GMT). No. of bitstreams: 1 Goos_SilviaCarlaHaither_D.pdf: 7178544 bytes, checksum: 62ca8cec5872617bf46a79e12727c605 (MD5) Previous issue date: 2005 / Doutorado / Físico-Química / Doutor em Ciências
12

Thermorheology and processing of polyethylene blends : macromolecular structure effects

Velazquez, Omar Delgadillo 11 1900 (has links)
Rheological and processing behavior of a number of linear low-density polyethylene(LLDPE)/low-density polyethylene (LDPE) blends was studied with emphasis on the effects of long chain branching. First, a linear low-density polyethylene (LL3001.32) was blended with four LDPE's having distinctly different molecular weights. At high LDPE weight fractions, DSC melting thermograms have shown three different polymer phases; two for the pure components and a third melting peak of co-crystals. Different rheological techniques were used to check the thermo rheological behavior of all blends in the melt state and the effect of long chain branching. It was found that all blends are miscible in the melt state at small LDPE concentrations. The elongational behavior of the blends was studied using a uniaxial extensional rheometer, SER. The blends exhibit strain hardening behavior at high rates of deformation even at LDPE concentrations as low as 1%, which suggests the strong effect of branching added by the LDPE component. On the other hand, shear rheology was found to be insensitive to detect addition of small levels of LDPE up to lwt%. The second set of blends prepared and studied consisted of two Ziegler-Natta LLDPE's (LL3001.32 and Dowlex2045G) and two metallocene LLDPE's(AffinityPL1840 and Exact 3128) blended with a single LDPE. In DSC melting thermograms, it was observed that blends with metallocence LLDPE's exhibit a single melting peak at all compositions; whereas the Ziegler-Natta blends exhibit three melting peaks at certain compositions. It was found also that the metallocene LLDPE's are miscible with the LDPE at all concentrations. On the other hand, the Ziegler-Natta LLDPE's were found to be miscible with LDPE only at small LDPE concentrations. The processing behavior of all blends with emphasis on the effects of long chain branches was also studied in capillary extrusion. The critical shear stresses for the onset of sharkskin and gross melt fracture are slightly delayed with the addition of LDPE into LLDPE. Furthermore, the amplitude of the oscillations in the stick-slip flow regime, known as oscillating melt fracture, were found to scale with the weight fraction of LDPE. Amounts as low as 1 wt% LDPE have a significant effect on the amplitude of pressure oscillations. These effects are clearly due to the presence of LCB. It is suggested that the magnitude of oscillations in the oscillating melt fracture flow regime can be used as a method capable to detect low levels of LCB. Finally, the sharkskin and stick-slip polymer extrusion instabilities of a linear low-density polyethylene were studied as a function of the type of die geometry. The critical wall shear stress for the onset of flow instabilities, the pressure and flow rate oscillations, and the effects of geometry and operating conditions on the instabilities are presented for a LLDPE. It was found that sharkskin and stick-slip instabilities were present in the capillary and slit extrusion. However, stick-slip and sharkskin in annular extrusion are absent at high ratios of the inside to outside diameter of the annular die. This observation also explains the absence of these instabilities in polymer processing operations such as film blowing. These phenomena are explained in terms of the surface to volume ratio of the extrudates. / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
13

Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications

Vidhate, Shailesh 12 1900 (has links)
The utilization of biodegradable polymers is critical for developing “cradle to cradle” mindset with ecological, social and economic consequences. Poly(hydroxy butyrate-co-valerate) (PHBV) shows significant potential for many applications with a polypropylene equivalent mechanical performance. However, it has limitations including high crystallinity, brittleness, small processing window, etc. which need to be overcome before converting them into useful products. Further the development of biodegradable strain sensing polymer sensors for structural health monitoring has been a growing need. In this dissertation I utilize carbon nanotubes as a self sensing dispersed nanofiller. The impact of its addition on PHBV and a blend of PHBV with poly(butylene adipate-co-terephthalate) (PBAT) polymer was examined. Nanocomposites and blends of PHBV, PBAT, and MWCNTs were prepared by melt-blending. The effect of MWCNTs on PHBV crystallinity, crystalline phase, quasi-static and dynamic mechanical property was studied concurrently with piezoresistive response. In PHBV/PBAT blends a rare phenomenon of melting point elevation by the addition of low melting point PBAT was observed. The blends of these two semicrystalline aliphatic and aromatic polyesters were investigated by using differential scanning calorimetry, small angle X-ray scattering, dynamic mechanical analysis, surface energy measurement by contact angle method, polarized optical and scanning electron microscopy, and rheology. The study revealed a transition of immiscible blend compositions to miscible blend compositions across the 0-100 composition range. PHBV10, 20, and 30 were determined to be miscible blends based on a single Tg and rheological properties. The inter-relation between stress, strain, morphological structure and piezoresistive response of MWCNT filled PHBV and PHBV/PBAT blend system was thoroughly investigated. The outcomes of piezoreistivity study indicated MWCNT filled PHBV and PHBV/PBAT blend system as a viable technology for structural health monitoring. Finally, the compostability of pure polymer, blend system, and MWCNT filled system was studied indicating that PBAT and CNT decreased the biodegradability of PHBV with CNT being a better contributor than PBAT.
14

Compatibilization of poly(vinylidene fluoride)/nylon 6 blends by intermolecular association

Hashim, Kamaruddin January 1996 (has links)
Blends of poly(vinylidene fluoride) (PVDF) and polyamide 6 (N6) are interesting for both scientific studies and commercial exploitation. PVDF is known to be miscible with polymers produced from monomers containing carbonyl side groups, eg. polyethyl acrylate, polyacrylamide etc., but is not miscible with polymers containing carbonyl groups in the main chain, ego polyamides, polyester, etc. Although complete miscibility of the blend components is not always necessary, strong physical interactions between the two components are needed in order to obtain a compatible blend, i.e. one which exhibits good mechanical properties. An investigation was carried out to explore the possibility to compatibilise blends of PVDF and N6 using y-radiation to graft acid groups on either polymer and subsequently ionomerizing these with zinc cations. Graft copolymer type of compatibilizer was produced when the acid functionalized PVDF (grafted PVDF) was blended with N6 or acid functionalized N6 (grafted N6). Fourier transform infrared analysis has confirmed the occurance of reactions between acid groups in the grafted PVDFand amine groups in the N6. The compatibility of the PVDF/N6 blends was found to increase with increasing amount of carboxylic acid groups in the two polymers. This was accompanied by an increase in Tg of the N6 phase in blend, which became more pronounced when both components were grafted. Tensile test and solvent resistance experiments were carried out to relate the compatibization of the blend to the improvement in mechanical properties. Ionomerization of the functionalized polymers with zinc cations was performed in order to study the effect on compatibility of the blend. The neutralization of the acid groups in either polymer in the blend by addition of zinc acetyl acetonate was found to suppress the chemical reaction with the amine end groups in the N6 phase, and to cause a reduction in the T g and a reduction in crosslinking of the N 6 phase. However when both polymers were grafted, the crystallinity of the N6 phase was restored, which was accompanied by an increase in Tg.
15

Structure and Dynamics in Novel Polyolefin and Their Blends for Sustainability

Kafle, Navin K. 02 August 2023 (has links)
No description available.
16

Rheology of Miscible Polymer Blends with Hydrogen Bonding

Yang, Zhiyi 02 October 2007 (has links)
No description available.
17

COMPOSITES OF MULTI-WALLED CARBON NANOTUBES WITH POLYPROPYLENE AND THERMOPLASTIC OLEFIN BLENDS PREPARED BY MELT COMPOUNDING

Petrie, Kyle 02 October 2013 (has links)
Composites of multi-walled carbon nanotubes (MWCNTs) with polypropylene (PP) and thermoplastic olefins (TPOs) were prepared by melt compounding. Two non-covalent functionalization methods were employed to improve nanotube dispersion and the resulting composite properties are reported. The first functionalization approach involved partial coating of the surface of the nanotubes with a hyperbranched polyethylene (HBPE). MWCNT functionalization with HBPE was only moderately successful in breaking up the large aggregates that formed upon melt mixing with PP. In spite of the formation of large aggregates, the samples were conductive above a percolation threshold of 7.3 wt%. MWCNT functionalization did not disrupt the electrical conductivity of the nanotubes. The composite strength was improved with addition of nanotubes, but ductility was severely compromised because of the existence of aggregates. The second method involved PP matrix functionalization with aromatic moieties capable of π-π interaction with MWCNT sidewalls. Various microscopy techniques revealed the addition of only 25 wt% of PP-g-pyridine (Py) to the neat PP was capable of drastically reducing nanotube aggregate size and amount. Raman spectroscopy confirmed improved polymer/nanotube interaction with the PP-g-Py matrix. Electrical percolation threshold was obtained at a MWCNT loading of approximately 1.2 wt%. Electrical conductivity on the order of 10-2 S/m was achieved, suggesting possible use in semi-conducting applications. Composite strength was improved upon addition of MWCNTs. The matrix functionalization with Py resulted in a significant improvement in composite ductility when filled with MWCNTs in comparison to its maleic anhydride (MA) counterpart. Preliminary investigations suggest that the use of alternating current (AC) electric fields may be effective in aligning nanotubes in PP to reduce the filler loading required for electrical percolation. Composites containing MWCNT within PP/ethylene-octene copolymer (EOC) blends were prepared. Microscopy revealed that MWCNTs localized preferentially in the EOC phase. This was explained by the tendency of the system to minimize interfacial energy when the MWCNTs reside in the thermodynamically preferential phase. A kinetic approach, which involved pre-mixing the MWCNTs with PP and adding the EOC phase subsequently was attempted to monitor the migration of MWCNTs. MWCNTs began to migrate after two minutes of melt mixing with the EOC. The PP-g-Py matrix functionalization appears to slightly delay the migration. A reduction in electrical percolation threshold to 0.5 wt% MWCNTs was achieved with a co-continuous blend morphology, consisting of a 50/50 by weight ratio of PP and EOC. / Thesis (Master, Chemical Engineering) -- Queen's University, 2013-09-30 13:22:24.499
18

Fibres from recycled post consumer PET/nylon 6 blends

Kegel, Mark Steven, n/a January 2006 (has links)
The objective of this project was to develop blends based upon post consumer RPET and N6, and to evaluate the suitability of these blends to form fibres for the end use in carpet fibre. In the work carried out it was found it is possible to spin RPET/N6 biconstituent fibres over a wide range of blend ratios. All the blends studied have diminished physical properties when compared to those of pure RPET and N6. The processability of these blends also deteriorated due to the large increases in normal forces which manifests in extrusion equipment as die swell that often results in melt fracture. It has been shown that the morphology of the fibre controls the degree of decay in properties and die swell at the spinnerette. The blends that are rich in one phase, with the secondary phase distributed as elongated fibrils have shown better physical performance and improved processing compared to the blends 70/30 � 30/70, which have poorer properties and increased die swell due to there co-continuous morphology. In quiescent studies, the physical properties of the blends have had little deviation from those predicted using a rule of mixtures line. In and around the 50% RPET blend, die swell was observed to be extreme and this makes fibre spinning difficult. It was found that this was caused by a loss in viscosity in the blends and a general increase in normal forces in response to applied shear. The die swell phenomenon is a rheological characteristic of the blends, which was inevitably caused by internal capillary flow of one component in the other. IR spectroscopy has shown that there is little to no in-situ compatibilisation occurring during simple melt processing. However, it was found that significant interfacial compatibilisation could be achieved through solid stating N6/RPET blends. The FTIR spectra for solid state blends in figure 4.51 has shown absorbency in the 3300 cm-1 region after all free N6 was removed. This indicates that in-situ compatibilisation has occurred between the phases in the solid stating process and it is a time dependent reaction. The Burgers and Koltunov models can be used to predict the creep behaviour of the fibre blends studied. The Burgers model provides greater accuracy for longer-term exposure to stress. From the thermal results, the solid stating process significantly affects the melting and crystallisation out of the melt and the ultimate level of crystallinity. The contribution of the copolymer in these changes appears to be small. The physical strength of the fibres made on the laboratory line was only marginally lower than those made on a factory line. The morphology of the mid-range blends is co-continuous and that of the N6 and RPET rich blends is dispersed droplet morphology. Based on the finding, a N6 rich blends and in particular the 10% RPET blend is the most suitable for further commercial development as its processing, physical performance and post spinning processing closely resemble the pure N6 currently in use. It has provided performance and consistency throughout the processing and testing we have conducted.
19

Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends

Uggini, Hari 2012 May 1900 (has links)
New regulations like the Clean Air Interstate Rule (CAIR) will pose greater challenges for Coal fired power plants with regards to pollution reduction. These new regulations plan to impose stricter limits on NOX reduction. The current regulations by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously at the Coal and Biomass energy lab at Texas A&M reported that dairy biomass can be an effective Reburn fuel with NOX reduction of up to 95%; however little work has been done to model such a process with Feedlot Biomass as a blend with the main burner fuel. The present work concerns with development of a zero dimensional for a low NOx burner (LNB) model in order to predict NOX emissions while firing a blend of Coal and dairy biomass. Two models were developed. Model I assumes that the main burner fuel is completely oxidized to CO,CO2,H20 and fuel bound nitrogen is released as HCN, NH3, N2; these partially burnt product mixes with tertiary air, undergoes chemical reactions specified by kinetics and burns to complete combustion. Model II assumes that the main burner solid fuel along with primary and secondary air mixes gradually with recirculated gases, burn partially and the products from the main burner include partially burnt solid particles and fuel bound nitrogen partially converted to N2, HCN and NH3. These products mix gradually with tertiary air, undergo further oxidation-reduction reactions in order to complete the combustion. The results are based on model I. Results from the model were compared with experimental findings to validate it. Results from the model recommend the following conditions for optimal reduction of NOx: Equivalence Ratio should be above 0.95; mixing time should be below 100ms. Based on Model I, results indicate that increasing percentage of dairy biomass in the blend increases the NOx formation due to the assumption that fuel N compounds ( HCN, NH3) do not undergo oxidation in the main burner zone. Thus it is suggested that model II must be adopted in the future work.
20

Analysis of acrylic polymers by MALDI-TOF mass spectrometry

Wyatt, Mark Francis January 2001 (has links)
Poly(methyl methacrylate) (PMMA) homopolymers synthesised using 'classical' anionic methods and subsequently studied by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) are discussed. Specifically, the attempts at different end-group functionalisation reactions, their varying degrees of success, and the characterisation of these functionalized polymers via MALDI are reported. Extra peaks were observed in the spectra of samples containing a tertiary amine end-group. A mechanism for the in situ elimination of H(_2)(g) involving these end-groups, which would fit the observations, is proposed. Two alternative, 'non-classical' routes to the desired materials were investigated, as difficulties in successfully performing capping reactions to give end functionalised PMMA were noted. The first method was a variation of standard anionic polymerisation that involved the use of lithium silanolates, which could be performed at a higher temperature than normal. The second was a controlled free-radical technique known as Reversible Addition-Fragmentation Chain Transfer (RAFT). A lack of control of the polymerisation to the desired degree was observed with the former method. A well-defined RAFT sample was observed to undergo in situ eliminadon also, for which a mechanism involving the dithioester end-group is proposed, and which is supported by MALDI-collision induced dissociation (CID) evidence. The synthesis of block copolymers of various compositions of MMA with r-butyl methacrylate (t-BMA) and hexyl methacrylate (HMA), along with their homopolymers, and their subsequent characterisation is reported. PHMA was analysed easily, in contrast to Pt-BMA. Only copolymers with a high PMMA content were analysed successfully and this has been rationalised in terms of the factors that affect cationisation. The characterisation of equimolar blends of various end-functionalised PMMA samples is reported also. Samples that favour the binding of a metal ion over protonation appear to have a higher ion yield. Once more, these observations are rationalised in terms of the factors that affect cationisation.

Page generated in 0.0418 seconds