• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiuser Interference Cancellation in Multicarrier CDMA System with Constrained Adaptive Inverse QRD-RLS Algorithm

Liao, Tai-Yin 09 July 2001 (has links)
In this thesis, the multi-carrier (MC) code division multiple access (CDMA) system is considered in Rayleigh fading channel. The main concern of this thesis is to devise a new direct linearly constrained constant modulus (LCCM) inverse QRD-RLS algorithm for multiple access interference (MAI) cancellation and the problem due to the mismatch of the channel estimator. In the conventional approach, two significant detectors are applied to the system for multiuser interference suppression, one is the blind adaptation algorithm and the other is adaptive linearly constrained PLIC approach. However, the mirror effect may occur when the blind adaptation algorithm is employed. It might affect the performance in terms of bit error rate (BER), although the desired signal to interference (due to other users) improvement is still acceptable. Moreover, in case that the channel coefficients could not be estimated perfectly, the mismatch problem may occur to degrade the performance of the adaptive linearly constrained PLIC approach with the LMS or RLS algorithm. To overcome the mismatch problem, the conventional approach is to use the LCCM criterion with gradient algorithm. However, the convergence rate of the gradient algorithm is too slow to be implemented in real-time wireless communication system. In this thesis, to have fast convergence rate and to circumvent the mismatch problem, the robust LCCM-IQRD algorithm is devised and applied to the MC-CDMA system in Rayleigh fading channel. The proposed robust LCCM-IQRD algorithm has shown to be more effective in terms of MAI cancellation and the mismatch due to imperfect channel estimator. The performance, in terms of BER, of the proposed algorithm is superior to that of the conventional PLIC based algorithms, the blind adaptation algorithm, and the conventional LCCM gradient algorithm.
2

Wavelet-Based Multiuser MC-CDMA Receiver with Linearly Constrained Constant Modulus Inverse QRD-RLS Algorithm

Liu, Hsiao-Chen 07 July 2002 (has links)
In this thesis, the problem of multiple access interference (MAI) suppression for the multi-carrier (MC) code division multiple access (CDMA) system, based on the wavelet-based (WB) multi-carrier modulation, associated with the combining process is investigated for Rayleigh fading channel. The main concern of this thesis is to derive a new scheme, based on the linearly constrained constant modulus (LCCM) criterion with the robust inverse QR decomposition (IQRD) recursive least squares (RLS) algorithm to improve the performance of the conventional MC-CDMA system with combining process. To verify the merits of the new algorithm, the effect due to imperfect channel parameters estimation and frequency offset are investigated. We show that the proposed robust LCCM IQRD-RLS algorithm outperforms the conventional LCCM-gradient algorithm [6], in terms of output SINR, improvement percentage index (IPI), and bit error rate (BER) for MAI suppression under channel mismatch environment. Also, the performance of the WB MC-CDMA system is superior to the one with conventional MC-CDMA system. It is more robust to the channel mismatch and frequency offset. Moreover, the WB MC-CDMA system with robust LCCM IQRD-RLS algorithm does have better performance over other conventional approaches, such as the LCCM-gradient algorithm, maximum ratio combining (MRC), blind adaptation algorithm and partitioned linear interference canceller (PLIC) approach with LMS algorithm, in terms of the capability of MAI suppression and bit error rate (BER).

Page generated in 0.0628 seconds