Spelling suggestions: "subject:"nordsieck""
1 |
Um contra-exemplo ao teorema de Bloch-Nordsieck na cromodinâmica quântica / A counter-example to the Bloch-Nordsieck theorem in quantum chromodynamics.Thomaz, Maria Teresa Climaco dos Santos 27 November 1981 (has links)
Usando teoria de perturbação, fizemos uma análise detalhada da divergência infravermelha em 4ª ordem do processo de aniquilação do par elétron-pósitron. Mostramos que o teorema de Bloch-Nordsieck garante o cancelamento destas divergências em QED. Em seguida, consideramos um processo em QCD com duas partículas coloridas no estado inicial, somando sobre as cores destas duas partículas. O processo escolhido foi o de aniquilação do par quark-anti-quark. O processo em 4ª ordem de perturbação e mostramos neste caso que o Teorema de Block-Nordsieck não se verifica. Este resultado é consequência do fato desta teoria ter um caráter não-abeliano. O não-cancelamento das divergências infravermelhas significa que a natureza do estado ligado é fundamental para o uso consistente da teoria de perturbação na QCD. / Using pertubation theory, we made a detailed analysis of the infrared divergencies to the 4th order for the phocess of annihilation of the pair electron-positron. We showed that the Bloch-Nordsieck theorem guarantees the cancellation of these divergencies in QED. Then we considered a process in QED involving two coloured particles in the initial state, summing over the colours of these particles. The process chosen was the annihilation of the pair quark-anti-quark. We calculated the process to the 4ª order in perturbation theory, and showed that in this case the Bloch-Nordsieck theorem in not verified. This result is a consequence of the fact that this theory has a non-abelian caracter. The non-cancellation of the infrared divergencies signifies that the nature of the bound-state is fundamental for the consistent use of perturbation theory in QCD.
|
2 |
Um contra-exemplo ao teorema de Bloch-Nordsieck na cromodinâmica quântica / A counter-example to the Bloch-Nordsieck theorem in quantum chromodynamics.Maria Teresa Climaco dos Santos Thomaz 27 November 1981 (has links)
Usando teoria de perturbação, fizemos uma análise detalhada da divergência infravermelha em 4ª ordem do processo de aniquilação do par elétron-pósitron. Mostramos que o teorema de Bloch-Nordsieck garante o cancelamento destas divergências em QED. Em seguida, consideramos um processo em QCD com duas partículas coloridas no estado inicial, somando sobre as cores destas duas partículas. O processo escolhido foi o de aniquilação do par quark-anti-quark. O processo em 4ª ordem de perturbação e mostramos neste caso que o Teorema de Block-Nordsieck não se verifica. Este resultado é consequência do fato desta teoria ter um caráter não-abeliano. O não-cancelamento das divergências infravermelhas significa que a natureza do estado ligado é fundamental para o uso consistente da teoria de perturbação na QCD. / Using pertubation theory, we made a detailed analysis of the infrared divergencies to the 4th order for the phocess of annihilation of the pair electron-positron. We showed that the Bloch-Nordsieck theorem guarantees the cancellation of these divergencies in QED. Then we considered a process in QED involving two coloured particles in the initial state, summing over the colours of these particles. The process chosen was the annihilation of the pair quark-anti-quark. We calculated the process to the 4ª order in perturbation theory, and showed that in this case the Bloch-Nordsieck theorem in not verified. This result is a consequence of the fact that this theory has a non-abelian caracter. The non-cancellation of the infrared divergencies signifies that the nature of the bound-state is fundamental for the consistent use of perturbation theory in QCD.
|
3 |
Asymptotic Symmetries and Faddeev-Kulish states in QED and GravityGaharia, David January 2019 (has links)
When calculating scattering amplitudes in gauge and gravitational theories one encounters infrared (IR) divergences associated with massless fields. These are known to be artifacts of constructing a quantum field theory starting with free fields, and the assumption that in the asymptotic limit (i.e. well before and after a scattering event) the incoming and outgoing states are non-interacting. In 1937, Bloch and Nordsieck provided a technical procedure eliminating the IR divergences in the cross-sections. However, this did not address the source of the problem: A detailed analysis reveals that, in quantum electrodynamics (QED) and in perturbative quantum gravity (PQG), the interactions cannot be ignored even in the asymptotic limit. This is due to the infinite range of the massless force-carrying bosons. By taking these asymptotic interactions into account, one can find a picture changing operator that transforms the free Fock states into asymptotically interacting Faddeev- Kulish (FK) states. These FK states are charged (massive) particles surrounded by a “cloud” of soft photons (gravitons) and will render all scattering processes infrared finite already at an S-matrix level. Recently it has been found that the FK states are closely related to asymptotic symmetries. In the case of QED the FK states are eigenstates of the large gauge transformations – U(1) transformations with a non-vanishing transformation parameter at infinity. For PQG the FK states are eigenstates of the Bondi-Metzner-Sachs (BMS) transformations – the asymptotic symmetry group of an asymptotically flat spacetime. It also appears that the FK states are related the Wilson lines in the Mandelstam quantization scheme. This would allow one to obtain the physical FK states through geometrical or symmetry arguments. We attempt to clarify this relation and present a derivation of the FK states in PQG from the gravitational Wilson line in the eikonal approximation, a result that is novel to this thesis.
|
Page generated in 0.0385 seconds