• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 53
  • 27
  • 16
  • 8
  • 6
  • 6
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 364
  • 364
  • 364
  • 81
  • 72
  • 67
  • 42
  • 36
  • 33
  • 33
  • 32
  • 31
  • 31
  • 29
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Blood-brain barrier transport of drugs across species with the emphasis on health, disease and modelling /

Tunblad, Karin, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 5 uppsatser.
22

Role of the blood-brain barrier in stereoselective distribution and delay in H₁ receptor occupancy of cetirizine in the guinea pig brain /

Gupta, Anubha, January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 4 uppsatser.
23

Studies in blood-brain barrier disruption in anthrax meningitis

Mukherjee, Dhritiman V. January 2009 (has links)
Thesis (Ph.D.)--George Mason University, 2009. / Vita: p. 102. Thesis director: Serguei G. Popov. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biosciences. Title from PDF t.p. (viewed June 10, 2009). Includes bibliographical references (p. 84-101). Also issued in print.
24

Noninvasive and targeted interruption of the blood brain barrier for drug delivery using focused ultrasound in the treatment of CNS disorders

Gao, Zimeng 12 March 2016 (has links)
Despite the prevalence of CNS disorders, treatment options for CNS disorders fall woefully behind treatment options for other systemic disorders. This is due to the presence of the blood brain barrier (BBB) acting as an obstacle, preventing foreign substances from entering the brain. A newly developed and innovative biomedical procedure attempts to bypass the BBB in the delivery of therapeutics by using focused ultrasound (FUS) to disrupt and temporarily open the BBB. The use of FUS-facilitated BBB opening is able to target specific tissue for noninvasive, localized BBB penetration. As the technique is experimental and in it's nascent stage of development, there are only a few studies that investigate its abilities in delivering treatments directly to the brain. The studies involve delivery of large, hydrophilic molecules that traditionally would not be able to bypass the BBB and enter the brain, and analysis of CNS concentrations of the molecules after FUS treatment, as well as the therapeutic successes. Results of FUS the studies are promising and the results demonstrate that the procedure is able to significantly increase drug concentrations in the brain, increase survival rates in animal models, decrease tumor growth, and decrease tumor margins and volume. The potential and power of FUS should be further explored as the future of CNS disorder treatments.
25

In vitro modulatory effects of fermented rooibos extract (Aspalathus linearis) against ethanol-induced effects on the mouse blood-brain barrier

Mentor, Shireen January 2014 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / Alcohol abuse is a growing crisis within South Africa, with severe health and socio-economic implications. Alcohol compromises the function of the blood-brain barrier (BBB), and thus its ability to regulate the homeostatic environment of the CNS is interrupted. In this study, an in vitro model of the BBB was utilized to study the effects of selected concentrations of alcohol (25mM-200mM) and the ameliorating effects of fermented rooibos (Aspalathus linearis) (0.003125%-1%), in an attempt to reverse the harmful oxidative effects of alcohol. The literature clearly states that alcohol (ethanol) compromises the BBB by reactive oxygen species (ROS) production and, therefore, rooibos, a shrub high in antioxidants and widely utilized nationally, was added to alcohol-exposed mouse brain endothelial (bEnd5) cells with the view to reverse the alcohol-induced effects on the BBB model. Alcohol-treated (25mM-400mM) bEnd5 monolayers expressed no toxicity, however, cell numbers were significantly suppressed (P<0.0274). To validate this finding, the activity of the mitochondria was investigated in order to understand if the cell’s metabolism was related to the decrease in cell division. Results showed that for both acute and chronic exposure there was a decrease in mitochondrial activity (MA) for a period of 24-48 hours, thereafter, the MA of the bEnd5 cells returned to normality. However, in experiments which chronically (600mM and 800mM) exposed cells to alcohol over a period of 96 hours, MA was suppressed and did not return to normal. Fermented rooibos caused a biphasic response to cellular proliferation at 24-72 hours, where the lower concentrations (0.0625-0.125 %) caused an increase in cellular proliferation and the higher concentrations (0.5-1%) resulted in a relative decrease in cellular proliferation. The long-term effect, after acute exposure, however, resulted in cell suppression at 96 hours (P<0.0073). With respect to the MA, bEnd5 cells exposed to fermented rooibos showed that lower concentrations (0.003125-0.0125%) were suppressed at 24 hours and was elevated at 48 hours and96 hours for all concentrations. The exception being the highest concentration (0.1%), which showed a depression in MA (P<0.05). Treating cells with both alcohol and rooibos, resulted in exacerbated suppressing of the MA. The physiological function of the BBB model was investigated by monitoring the permeability using transendothelial electrical resistance (TEER) studies and the in vitro model used in this study was endorsed for the first time using high resolution scanning electron microscopy. TEER indicated incidental changes in the permeability, only at 24 hours, for both acute and chronic exposure to alcohol and rooibos. A novel finding, within this study, was the increase in electrical resistance across the formation of the cell monolayer, after treatment with alcohol. The data lead to the hypothesis for the effect of ROS on resistivity and provides a rationale to explain the effects of combinatory treatments that were expected to ameliorate the negative effect of alcohol, however, this study showed synergistically negative effects on the bEnd5 cells. In summary the main findings in this study were: (a) alcohol was not toxic on bEnd5cells, (b) alcohol increased the permeability across monolayers of bEnd5 cells and(c) rooibos did not significantly reverse the ROS-induced effects of alcohol, but exacerbated the effects. Rooibos treatment caused the following: (i) biphasic effect on cellular proliferation, (ii) an increase in MA, and (iii) a cyclic effect in TEER studies.
26

Participation of dendritic cells in neuroinflammation : factors regulating adhesion to human cerebral endothelium

Arjmandi Rafsanjani, Azadeh 11 1900 (has links)
Dendritic cells (DCs) form a key component of the immune response, as they are involved in the innate and adaptive immunity and in the process of tolerance. Under normal conditions, DCs are absent from the Central Nervous System (CNS), as the blood brain barrier (BBB) restricts their entry. However, DCs have recently been implicated in the pathogenesis of several CNS diseases. The molecular mechanisms that mediate DC trafficking across the BBB are poorly understood. The objectives of this study were to examine the role of endothelial cell adhesion molecules (eCAMs) and their ligands in the process of DC adhesion to the BBB endothelium, and to investigate the participation of DCs in human CNS diseases. To study DC adhesion, DCs were generated in vitro by culturing human blood monocytes in the presence of GM-CSF and IL- 4, and DC maturation was induced by adding inflammatory cytokines (TNF-α, IL-1β, IL-6) and PGE₂. Immature and mature DCs displayed differences in their expression of surface molecules, including eCAM ligands, by flow cytometry. Adhesion to the cerebral endothelium was investigated using an in vitro model of the BBB consisting of primary cultures of human brain microvessel endothelial cells (HBMEC). Immature or mature DCs were incubated with resting or TNF-α-activated HBMEC for up to one hour. Only a few DCs adhered to resting HBMEC, but adhesion was upregulated upon activating HBMEC (p<O.Ol). Moreover, immature DCs adhered to activated HBMEC to a greater extent compared to mature DCs (p<O.OOl). Blocking experiments indicated that the adhesion of both immature and mature DCs to HBMEC was dependent upon ICAM-1-CD18 or ICAM-2-CD18, ICAM-2-DC-SIGN, and PECAM-l PECAM-l interactions. In addition, VCAM-1-VLA-4 interactions mediated the adhesion of immature but not mature DCs to activated HBMEC. Using immunohistochemistry for DC markers, we also examined the presence of DCs in human inflammatory, infectious, and neurodegenerative diseases, stroke and tumours. The results indicate accumulation of DC SIGN—, fascin—, and MHC class Il—expressing DCs in the CNS under most pathological conditions. These findings provide further insight into the mechanisms of neuroinflammation, and highlight the role of DCs and the BBB endothelium in this process. / Medicine, Faculty of / Medicine, Department of / Experimental Medicine, Division of / Graduate
27

Blood brain barrier dysfunction and a role for inflammation in age-dependent salt-sensitive hypertension

Nist, Kayla Marie 28 July 2020 (has links)
Hypertension is the principal risk factor for chronic kidney disease, myocardial infarction, and stroke, and is responsible for 10% of deaths globally. Normal aging and elevated dietary sodium intake have both been identified as contributors to hypertension, the salt sensitivity of blood pressure, and elevations in sympathetic tone. Normal aging has also been identified as a contributor to vascular dysfunction and inflammation. We hypothesize that normal aging and increased dietary sodium intake contribute to the development and maintenance of age-related salt-sensitive hypertension. We anticipate with age that there are elevations in sympathetic tone, decreases in the vascular integrity of the blood brain barrier, and an increase in the inflammatory response of the innate immune system of the brain by astrocytes and microglia. Using male Sprague-Dawley (SD) rats aged 3-, 8- and 16-months-old as a model of normal aging, rodents were randomly assigned to a normal salt (NS; 0.6% NaCl) or high salt (HS; 4% NaCl) diet. We then assessed the development of hypertension, the salt sensitivity of blood pressure, changes in central vascular integrity, and a role for central inflammation in age-dependent hypertension. We observed a robust age-dependent increase in blood pressure in rodents on a NS diet suggesting male SD rats develop age-dependent hypertension. We also observed that aged rats develop the salt sensitivity of blood pressure. We saw significant elevations in global sympathetic tone, sympathetic tone to the vasculature, and sympathetic tone to the kidney in response to normal aging. Further, there was a dramatic extravasation of intravascularly infused dextrans in the paraventricular nucleus of the hypothalamus (PVN) with age, suggesting a loss in vascular integrity of the blood brain barrier, regardless of dietary sodium intake. Astrocytic density in the PVN was maintained in animals on a NS diet. In rodents on a HS diet, both young and middle aged rats, but not in aged rats showed increased levels of astrocytic density. There was no difference in interstitial astrocyte densities, which excluded perivascular astrocytes, compared to total astrocyte density, suggesting that perivascular astrocytes did not play a significant role in astrocyte activation. Microglial branching complexity was maintained in all groups regardless of salt intake, suggesting that microglial activation was the same through all groups. However, microglial morphology showed a trending increase in activation level on a NS with age. On a HS diet, there is an increase in activation state at 8-months-old. Overall, normal aging and increases in dietary sodium intake contribute to increases in blood pressure, elevations in sympathetic tone, and ultimately a loss in vascular integrity of the blood brain barrier. Importantly, the following studies reveal a novel breakdown in the blood brain barrier in a normal aging model of hypertension by which increased blood pressure and aging evokes an increase in blood brain barrier permeability.
28

The Impact of Cerebral Microinfarction on Blood-Brain Barrier Permeability and Behaviour in Mice

Filadelfi, Melissa 17 September 2020 (has links)
From mid- to late-life aging, many individuals acquire hundreds or even thousands of tiny strokes, known as microinfarcts. These lesions are not apparent using conventional neuroimaging and are therefore primarily detected through histopathological analysis. Notably, clinical and preclinical researchers are unsure of how cerebral microinfarction impacts the brain’s vasculature and its effect on motor output. This thesis aims to characterize a mouse model of cerebral microinfarction to assess the impact of these microscopic lesions on blood-brain barrier (BBB) integrity and motor behaviour. For the first experiment, mice were unilaterally injected through the left common carotid artery with GFP microspheres (20 µm) and were sacrificed at different time points post-surgery (days 1, 3, 7, 14, and 21). All mice received an intravascular injection of Evans Blue dye (100 µl) through the tail vein thirty minutes prior to being transcardially perfused in order to evaluate BBB extravasation, a measurement of BBB disruption. To evaluate motor performance post-microinfarction, sham and microinfarct mice underwent a battery of behavioural tasks prior to and post-surgery. Cerebral microinfarction resulted in acute BBB disruption, where albumin leakage was most prominent one day following surgery. With our microinfarct mouse model, a Python script was developed to semi-automatically detect and register the microspheres to specific brain regions using the Allen Mouse Brain Atlas (version 3). Additionally, using several gross and fine motor behavioural tasks, analyses performed across both experimental groups revealed no significant motor impairments. Having a better insight into how these microscopic lesions affect brain structure and function in preclinical models would increase our understanding of how cerebral microinfarction impacts the human brain.
29

Considerations for Optimization of the Pharmacokinetic Analysis of Blood-Brain Barrier Permeability

Gilbank, Ashley January 2021 (has links)
Dynamic contrast enhanced MR imaging (DCE-MRI) has commonly been used to investigate disruptions in microvascular capillary permeability in pathologies such as tumours, and in brain diseases such as multiple sclerosis. This imaging technique involves intravenous injection of a contrast agent, which can modulate MR signal contrast, while frequently acquiring images (i.e. every few seconds) as the agent perfuses through the tissue of interest. Microvascular permeability, and other parameters such as blood volume and flow (perfusion) can be quantified through application of a pharmacokinetic model on the data acquired from the MRI scan. The model requires input from both the biological (e.g. pharmacokinetic rate constants) as well as physical (i.e. scanner settings) parameters. As there are a great many variables and different biophysical models (e.g. high blood flow, high permeability tissues, etc.) there needs to be considerations made for situations where the permeability may be only slightly different from normal. In the brain the blood-brain barrier (BBB) is a highly selective barrier that restricts most bulk diffusion/permeability of solutes. Changes in BBB permeability is likely only subtle in diseases such as depression or bipolar disorder, especially when compared against hypervascular-hypermemeable cancers that are void of a BBB altogether. The problem is however, to decide which model of BBB permeability is best suited for differentiating subtle changes. Thus the intention of this project was to investigate multiple pharmacokinetic models for the tracking of MRI contrast agent in regions of the brain with an intact BBB. In the brain, where there is strict regulation of molecules passing through the microvasculature into the extracellular space, and where more subtle disruptions might be of interest, different assumptions may be necessary. Four models were investigated: the Tofts model, the modified Tofts model, the two-compartment exchange model, and the uptake model. Scans of eight healthy subjects were analyzed, and permeability was quantified using each model. The accuracy of each model, quantified by the R\textsuperscript{2} value, were compared. Analysis found that the Tofts model performed significantly worse than the modified Tofts and Uptake models when fitting regions of the brain with a blood-brain barrier, with a p-value of 0.006. The analysis did not reveal any significant difference between the modified Tofts, Uptake or 2CX models, although perhaps it was obscured due to the limited number of data points. Further investigation is needed to determine any differences between the three top-performing models. / Thesis / Master of Applied Science (MASc)
30

Head Trauma Release of Histamine from Dural Mast Cells Alters Blood-Brain Barrier: Attenuation with Zolantidine

Laufer, Susan R. 12 1900 (has links)
This study employed a new model of mild-to-moderate head trauma to specifically identify the role of dural mast cell (MC) histamine in trauma-induced increased permeability in the blood-brain barrier (BBB). A single line was scored partially through the left dorsal parietal skull. Immediately following the trauma, degranulation was seen in 39% of the MCs on the left and in 2% on the right. After a 20 min survival period, left duras showed 55% with MC degranulation (fewer with complete degranulation) compared to 34% on the right. In the other experiments two parallel lines were scored following the injection of Evan's blue. Histamine assay showed histamine increased in the left cortex to 154% at 5 min, 174% at 10 min, and 151% at 20 min. Fluorescent quantitation of extravasated Evan's blue at 20 min following the trauma gave an increase of 1385% over the value measured for the right cortex. Zolantidine, a selective histamine H2 receptor antagonist, administered at 10- and 20- mg/kg 30 min before the trauma blocked 65% of the Evan's blue extravasation compared with the control and 2.5 mg group.

Page generated in 0.0681 seconds