• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilisation des floraisons pour les processus de subdivision dans les espaces de Chebyshev / Chebyshev Blossoming for subdivision schemes

Brilleaud, Martine 02 March 2017 (has links)
Les algorithmes utilisés en design géométrique permettent de construire des courbes paramétrées dans l'espace des polynômes. Ces algorithmes se transcrivent élégamment et simplement grâce à l'outil des floraisons (formes à pôles). L'intérêt des floraisons se manifeste également dans la possibilité qu'elles offrent de généraliser les algorithmes de design pour générer des courbes paramétrées dans les espaces de Chebyshev. Nous utilisons les floraisons dans le cadre des processus de subdivision et nous montrons comment cet outil s'adapte aussi bien aux processus stationnaires, qui permettent d'obtenir des splines polynomiales, qu'aux processus non stationnaires qui aboutissent aux splines de Chebyshev. Enfin cette "modélisation algorithmique" des processus de subdivision par les floraisons rend possible la création d'algorithmes permettant d'engendrer des splines constitués de morceaux en provenances de plusieurs espaces fonctionnels de types différents. / Geometric design algorithms are well suited to derive polynomial or piecewise polynomial parametric curves. These algorithms can be nicely converted to blossoms. Furthermore thanks to blossoms we also can generalize some design algorithms in order to derive parametric curves in Chebyshevian spaces.Blossoms quite naturally lead to subdivision schemes. They can be used to derive parametric polynomial splines. In the non-stationary case they they also can derive polynomial splines, and Chebyshevian splines (ie splines in various Chebyshevian spaces) as well. Finally we use blossoms as "algorithmic modeling" subdivision schemes in order to derive algorithms for splines whose pieces are in different Chebyshevian spaces.
2

Rožių žiedų išsilaikymo tyrimai / The Preservation Tests of Blossom Roses

Žemaitytė, Aušra 10 November 2005 (has links)
The tests purpose - to investigate the length and decorative of the preservation to different cultivates of roses blossom, keeping them in 14 C0 and 18 C0 soak water supply water and in solution of Chrysal. The experimentations carried out in the farm of Algimantas Žemaitis in the period of 2003 -2004. The cultivates of Thea hybrida clump Black Baccara, Black Magic, Eldorado, Raphaela, Red Devil, Vevdela, Versilia and clump of floribunda Akito, Gold Strike and Konfetti have been chosen to investigate the preservation of roses blossoms. The general conclusion of influence Chrysal solution: The length of decorative preservation of roses blossoms has been durable when we were keeping them in soak solution of Chrysal, neither the roses witches have been soaked in the water supply water. The cultivates from investigated of ten roses Raphaela have been blossomed durably and Gold Striks - shortly. In 14 C0 the cultivates of roses Raphaela preservated 16,1 days and Gold Strike – 13,1 days, keeping them in woter, 19,1 and 15,7 days accordingly in solution of Chrysal. In 18 C0 cultivates of roses Raphaela preservated 15,2 days and Gold Strike - 12,1 days, keeping them in woter, 18,0 days in solution of Chrysal. The cultivates of roses Black Bacara has been blossomed shortly – 14,0 days, keeping them in solution of Chrysal.

Page generated in 0.0418 seconds