• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Hardware Platform for Communication and Localization Performance Evaluation of Devices inside the Human Body

Li, Shen 31 May 2012 (has links)
"Body area networks (BAN) is a technology gaining widespread attention for application in medical examination, monitoring and emergency therapy. The basic concept of BAN is monitoring a set of sensors on or inside the human body which enable transfer of vital parameters between the patient´s location and the physician in charge. As body area network has certain characteristics, which impose new demands on performance evaluation of systems for wireless access and localization for medical sensors. However, real-time performance evaluation and localization in wireless body area networks is extremely challenging due to the unfeasibility of experimenting with actual devices inside the human body. Thus, we see a need for a real-time hardware platform, and this thesis addressed this need. In this thesis, we introduced a unique hardware platform for performance evaluation of body area wireless access and in-body localization. This hardware platform utilizes a wideband multipath channel simulator, the Elektrobit PROPSimâ„¢ C8, and a typical medical implantable device, the Zarlink ZL70101 Advanced Development Kit. For simulation of BAN channels, we adopt the channel model defined for the Medical Implant Communication Service (MICS) band. Packet Reception Rate (PRR) is analyzed as the criteria to evaluate the performance of wireless access. Several body area propagation scenarios simulated using this hardware platform are validated, compared and analyzed. We show that among three modulations, two forms of 2FSK and 4FSK. The one with lowest raw data rate achieves best PRR, in other word, best wireless access performance. We also show that the channel model inside the human body predicts better wireless access performance than through the human body. For in-body localization, we focus on a Received Signal Strength (RSS) based localization algorithm. An improved maximum likelihood algorithm is introduced and applied. A number of points along the propagation path in the small intestine are studied and compared. Localization error is analyzed for different sensor positions. We also compared our error result with the Cramèr- Rao lower bound (CRLB), shows that our localization algorithm has acceptable performance. We evaluate multiple medical sensors as device under test with our hardware platform, yielding satisfactory localization performance."
2

A Driver Circuit for Body-Coupled Communication

Korishe, Abdulah January 2013 (has links)
The main concept of Body-Coupled Communication (BCC) is to transmit the electrical information through the human body as a communication medium by means of capacitive coupling. Nowadays the current research of wireless body area network are expanding more with the new ideas and topologies for better result in respect to the low power and area, security, reliability and sensitivity since it is first introduced by the Zimmerman in 1995. In contrast with the other existing wireless communication technology such as WiFi, Bluetooth and Zigbee, the BCC is going to increase the number of applications as well as solves the problem with the cell based communication system depending upon the frequency allocation. In addition, this promising technology has been standardized by a task group named IEEE 802.15.6 addressing a reliable and feasible system for low power in-body and on-body nodes that serves a variety of medical and non medical applications. The entire BAN project is divided into three major parts consisting of application layer, digital baseband and analog front end (AFE) transceiver. In the thesis work a strong driver circuit for BCC is implemented as an analog front end transmitter (Tx). The primary purpose of the study is to transmit a strong signal as the signal is attenuated by the body around 60 dB. The Driver circuit is cascaded of two single-stage inverter and an identical inverter with drain resistor. The entire driver circuit is designed with ST65 nm CMOS technology with 1.2 V supply operated at 10 MHz frequency, has a driving capability of 6 mA which is the basic requirement. The performance of the transmitter is compared with the other architecture by integrating different analysis such as corner analysis, noise analysis and eye diagram. The cycle to cycle jitter is 0.87% which is well below to the maximum point and the power supply rejection ratio (PSRR) is 65 dB indicates the good emission of supply noise. In addition, the transmitter does not require a filter to emit the noise because the body acts like a low pass filter. In conclusion the findings of the thesis work is quite healthy compared to the previous work. Finally, there is some point to improve for the driver circuit in respect to the power consumption, propagation delay and leakage power in the future.
3

Geometrical theory, modeling and applications of channel polarization

Kwon, Seok Chul 12 January 2015 (has links)
Long-term evolution (LTE) standard has been successfully stabilized, and launched in several areas. However, the required channel capacity is expected to increase significantly as the explosively increasing number of smart-phone users implies. Hence, this is already the time for leading researchers to concentrate on a new multiple access scheme in wireless communications to satisfy the channel capacity that those smart users will want in the not-too-distant future. The diversity and multiplexing in a new domain - polarization domain - can be a strong candidate for the solution to that problem in future wireless communication systems. This research contributes largely to the comprehensive understanding of polarized wireless channels and a new multiple access scheme in the polarization domain - polarization division multiple access (PDMA). The thesis consists of three streams: 1) a novel geometrical theory and models for fixed-to-mobile (F2M) and mobile-to-mobile (M2M) polarized wireless channels; 2) a new wireless body area network (BAN) polarized channel modeling; and 3) a novel PDMA scheme. The proposed geometrical theory and models reveal the origin and mechanism of channel depolarization with excellent agreement with empirical data in terms of cross-polarization discrimination (XPD), which is the principal measure of channel depolarization. Further, a novel PDMA scheme utilizing polarization-filtering detection and collaborative transmitter-receiver-polarization (Tx-Rx-polarization) adjustment, is designed considering cellular orthogonal frequency division multiplexing (OFDM) systems. The novel PDMA scheme has large potential to be utilized with the conventional time, frequency, and code division multiple access (TDMA, FDMA, and CDMA); and spatial multiplexing for next-generation wireless communication systems.
4

Dielectric Resonator Antennas (DRA) for satellite and body area network applications / Étude et réalisation de antennes diélectriques pour les applications satellitaires et corps (BAN)

Alam, Muhammad Faiz 02 July 2012 (has links)
Dans cette thèse, on vise deux types d'applications de l’antenne à résonateur diélectrique (DRA): 1) La réalisation d’un élément rayonnant pour un réseau phasé embarqué sur un véhicule terrestre ou un avion. Cet élément de base requiert une couverture en élévation supérieure à celle des éléments imprimés pour permettre une poursuite typique comprise entre ±70°. La couverture dans un cône large est assurée avec une bonne pureté de polarisation circulaire en alimentant l’antenne à travers deux ouvertures à fente en H orthogonales parfaitement découplées en bande X. 2) La deuxième structure est destinée à la diversité d’antennes dans le contexte des réseaux corporels embarqués ou Body Area Network (BAN). L’antenne à diversité combine une antenne fente en boucle avec un DRA ce qui permet dans un espace compact de réaliser des diagrammes de type “broadside” et “endfire” respectivement. Les alimentations considérées sont de 2 types; Soit purement planaire (microruban et coplanaire) soit mixte en combinant une alimentation coaxiale et une alimentation coplanaire. Caractéristiques principales des antennes à résonateur diélectrique (DRA): Pour répondre aux attentes des utilisateurs en termes de débit, les systèmes de communication sans fils se tournent vers des fréquences de plus en plus élevées. La conséquence de cette montée en fréquence est notamment l’augmentation des pertes au niveau des éléments conducteurs et donc une diminution de l’efficacité globale des systèmes de communication. Dans ces circonstances, les DRA offre de meilleurs résultats par rapport à d'autres familles d'antennes à base d’éléments métalliques. De plus, les DRA offrent des pertes diélectriques négligeables, elles sont peu sensibles aux variations de température et s’intègrent facilement sur des technologies de fabrication planaires / Technologies such as direct broad cast satellite system (DBSS), Geosynchronous Earth Orbit (GEO) and Low Earth Orbit (LEO) satellite communications , global positioning system (GPS), high accuracy airborne navigation system and a large variety of radar systems demand for high level of antenna performance. Similar is the requirement for upcoming land based wireless systems such as cellular and indoor communication systems that is needed some more specific and additional features added to the antenna to compensate for the deficiencies encountered in system's performance. Though metallic antennas are capable enough to fulfil all the operational requirements, however at very high frequencies and under hostile temperature conditions they are constrained to face certain limitations. To avoid these constraints the performance of Dielectric Resonator Antennas (DRAs) is evaluated and their new applications are proposed. In the thesis, two types of antenna applications are sought :-First is for tracking and satellite applications that needs a larger aperture coverage in elevation plane. This coverage is realized with a good CP purity by proposing two ports dual linearly polarized DRA working at X-band. The DRA is excited by two orthogonal H-shaped aperture slots yielding two orthogonal polarizations in the broadside direction. A common impedance bandwidth of 5.9% and input port isolation of -35 dB are obtained. The broadside radiation patterns are found to be highly symmetric and stable with cross polarization levels -15dB or better over the entire matching frequency band. The maximum measured gain is found to be 2.5dBi at 8.4 GHz.- The 2nd type of antenna is a dual pattern diversity antenna to be used in the Body Area Network (BAN) context. This antenna combines a slot loop and DRA yielding broadside and end-fire radiation patterns respectively. Based upon the feeding techniques, the DG antenna is further divided into two categories one with planar feeds and the other with non-planar feeds (slot loop excited by planar CPW but DRA excited by vertical monopole) .Both types are successfully designed and measured upon body when configured into different propagation scenarios. The non-planar feeds antenna allows wider common impedance bandwidths than the planar feeds (4.95% vs 1.5%).In both cases, a maximum value of DG=9.5dB was achieved when diversity performance tests were carried out in rich fading environments. This value is close to the one (10 dB) theoretically reached in a pure Rayleigh environment and was obtained with efficiencies of 70% and 85% for the slot loop and the DRA respectively. Therefore, we conclude that these antennas could be used on the shoulders or the chest of professional clothes (firemen, policemen, soldier) where full planar integration is not a key issue but where the communication must be efficient in harsh environments and for various gestures, positions and scenarios
5

Dielectric Resonator Antennas (DRA) for satellite and body area network applications

Alam, Muhammad Faiz, Alam, Muhammad Faiz 02 July 2012 (has links) (PDF)
Technologies such as direct broad cast satellite system (DBSS), Geosynchronous Earth Orbit (GEO) and Low Earth Orbit (LEO) satellite communications , global positioning system (GPS), high accuracy airborne navigation system and a large variety of radar systems demand for high level of antenna performance. Similar is the requirement for upcoming land based wireless systems such as cellular and indoor communication systems that is needed some more specific and additional features added to the antenna to compensate for the deficiencies encountered in system's performance. Though metallic antennas are capable enough to fulfil all the operational requirements, however at very high frequencies and under hostile temperature conditions they are constrained to face certain limitations. To avoid these constraints the performance of Dielectric Resonator Antennas (DRAs) is evaluated and their new applications are proposed. In the thesis, two types of antenna applications are sought :-First is for tracking and satellite applications that needs a larger aperture coverage in elevation plane. This coverage is realized with a good CP purity by proposing two ports dual linearly polarized DRA working at X-band. The DRA is excited by two orthogonal H-shaped aperture slots yielding two orthogonal polarizations in the broadside direction. A common impedance bandwidth of 5.9% and input port isolation of -35 dB are obtained. The broadside radiation patterns are found to be highly symmetric and stable with cross polarization levels -15dB or better over the entire matching frequency band. The maximum measured gain is found to be 2.5dBi at 8.4 GHz.- The 2nd type of antenna is a dual pattern diversity antenna to be used in the Body Area Network (BAN) context. This antenna combines a slot loop and DRA yielding broadside and end-fire radiation patterns respectively. Based upon the feeding techniques, the DG antenna is further divided into two categories one with planar feeds and the other with non-planar feeds (slot loop excited by planar CPW but DRA excited by vertical monopole) .Both types are successfully designed and measured upon body when configured into different propagation scenarios. The non-planar feeds antenna allows wider common impedance bandwidths than the planar feeds (4.95% vs 1.5%).In both cases, a maximum value of DG=9.5dB was achieved when diversity performance tests were carried out in rich fading environments. This value is close to the one (10 dB) theoretically reached in a pure Rayleigh environment and was obtained with efficiencies of 70% and 85% for the slot loop and the DRA respectively. Therefore, we conclude that these antennas could be used on the shoulders or the chest of professional clothes (firemen, policemen, soldier) where full planar integration is not a key issue but where the communication must be efficient in harsh environments and for various gestures, positions and scenarios
6

Distributed Data Management Supporting Healthcare Workflow from Patients’ Point of View

Ayoubi, Tarek January 2007 (has links)
Patient’s mobility throughout his lifetime leaves a trial of information scattered in laboratories, clinical institutes, primary care units, and other hospitals. Hence, the medical history of a patient is valuable when subjected to special healthcare units or undergoes home-care/personal-care in elderly stage cases. Despite the rhetoric about patient-centred care, few attempts were made to measure and improve in this arena. In this thesis, we will describe and implement a high-level view of a Patient Centric information management, deploying at a preliminary stage, the use of Agent Technologies and Grid Computing. Thus, developing and proposing an infrastructure that allows us to monitor and survey the patient, from the doctor’s point of view, and investigate a Persona, from the patients’ side, that functions and collaborates among different medical information structures. The Persona will attempt to interconnect all the major agents (human and software), and realize a distributed grid info-structure that directly affect the patient, therefore, revealing an adequate and cost-effective solution for most critical information needs. The results comprehended in the literature survey, consolidating Healthcare Information Management with emerged intelligent Multi-Agent System Technologies (MAS) and Grid Computing; intends to provide a solid basis for further advancements and assessments in this field, by bridging and proposing a framework between the home-care sector and the flexible agent architecture throughout the healthcare domain.

Page generated in 0.0698 seconds