• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Driver Circuit for Body-Coupled Communication

Korishe, Abdulah January 2013 (has links)
The main concept of Body-Coupled Communication (BCC) is to transmit the electrical information through the human body as a communication medium by means of capacitive coupling. Nowadays the current research of wireless body area network are expanding more with the new ideas and topologies for better result in respect to the low power and area, security, reliability and sensitivity since it is first introduced by the Zimmerman in 1995. In contrast with the other existing wireless communication technology such as WiFi, Bluetooth and Zigbee, the BCC is going to increase the number of applications as well as solves the problem with the cell based communication system depending upon the frequency allocation. In addition, this promising technology has been standardized by a task group named IEEE 802.15.6 addressing a reliable and feasible system for low power in-body and on-body nodes that serves a variety of medical and non medical applications. The entire BAN project is divided into three major parts consisting of application layer, digital baseband and analog front end (AFE) transceiver. In the thesis work a strong driver circuit for BCC is implemented as an analog front end transmitter (Tx). The primary purpose of the study is to transmit a strong signal as the signal is attenuated by the body around 60 dB. The Driver circuit is cascaded of two single-stage inverter and an identical inverter with drain resistor. The entire driver circuit is designed with ST65 nm CMOS technology with 1.2 V supply operated at 10 MHz frequency, has a driving capability of 6 mA which is the basic requirement. The performance of the transmitter is compared with the other architecture by integrating different analysis such as corner analysis, noise analysis and eye diagram. The cycle to cycle jitter is 0.87% which is well below to the maximum point and the power supply rejection ratio (PSRR) is 65 dB indicates the good emission of supply noise. In addition, the transmitter does not require a filter to emit the noise because the body acts like a low pass filter. In conclusion the findings of the thesis work is quite healthy compared to the previous work. Finally, there is some point to improve for the driver circuit in respect to the power consumption, propagation delay and leakage power in the future.
2

Integrated Current Sensor using Giant Magneto Resistive (GMR) Field Detector for Planar Power Module

Kim, Woochan 19 December 2012 (has links)
Conventional wire bond power modules have limited application for high-current operation, mainly because of their poor thermal management capability. Planar power modules have excellent thermal management capability and lower parasitic inductance, which means that the planar packaging method is desirable for high-power applications. For these reasons, a planar power module for an automotive motor drive system was developed, and a gate-driver circuit with an over-current protection was planned to integrate into the module. This thesis discusses a current-sensing method for the planar module, and the integrated gate driver circuit with an over-current protection. After reviewing several current-sensing methods, it becomes clear that most popular current-sensing methods, such as the Hall-Effect sensor, the current transformer, the Shunt resistor, and Rogowski coils, exhibit limitations for the planar module integration. For these reasons, a giant magneto resistive (GMR) magnetic-field detector was chosen as a current-sensing method. The GMR sensor utilizes the characteristics of the giant magneto resistive (GMR) effect in that it changes its resistance when it is exposed to the magnetic-flux. Because the GMR resistor can be fabricated at the wafer level, a packaged GMR sensor is very compact when compared with conventional current sensors. In addition, the sensor detects magnetic-fields, which does not require direct contact to the current-carrying conductor, and the bandwidth of the sensor can be up to 1 MHz, which is wide enough for the switching frequencies of most of motor drive applications. However, there are some limiting factors that need to be considered for accurate current measurement: • Operating temperature • Magnetic-flux density seen by a GMR resistor • Measurement noise If the GMR sensor is integrated into the power module, the ambient temperature of the sensor will be highly influenced by the junction temperature of the power devices. Having a consistent measurement for varying temperature is important for module-integrated current sensors. An experiment was performed to see the temperature characteristics of a GMR sensor. The measurement error caused by temperature variation was quantified by measurement conditions. This thesis also proposes an active temperature error compensation method for the best use of the GMR sensor. The wide current trace of the planar power module helps to reduce the electrical/thermal resistance, but it hinders having a strong and constant magnetic-field-density seen by the GMR sensor. In addition, the eddy-current effect will change the distribution of the current density and the magnetic-flux-density. These changes directly influence the accurate measurement of the GMR sensor. Therefore, analyzing the magnetic-flux distribution in the planar power module is critical for integrating the GMR sensor. A GMR sensor is very sensitive to noise, especially when it is sensing current flowing in a wide trace and exposed to external fields, neither of which can be avoided for the operation of power modules. Post-signal processing is required, and the signal-conditioning circuit was designed to attenuate noise. The signal-conditioning circuit was designed using an instrumentation amplifier, and the circuit attenuated most of the noise that hindered accurate measurement. The over-current protection circuit along with the gate driver circuit was designed, and the concept was verified by experiments. The main achievements of this study can be summarized as: • Characterization of conventional current-sensing methods • Temperature characterization of the GMR resistor • Magnetic-flux distribution of the planar power module • Design of the signal-conditioning circuit and over-current protection circuit / Master of Science
3

Řízený laserový zdroj pro plašení ptactva / Controllable laser source for bird repelling

Vrtělková, Hana January 2021 (has links)
Tato diplomová práce se zabývá problematikou plašení ptáků a jejich humánního plašení pomocí laserů. Práce také pojednává o bezpečnosti laserů, problému řídicího obvodu laserových diod, kolimaci svazku a jeho rozšíření tak, aby výstupní výkon paprsku nepřekročil maximální hodnotu výstupního výkonu laseru třídy 2M.
4

Elektrický pohon s omezením přechodných dějů / The electric drive with current peak limiting

Keller, Karel January 2009 (has links)
My thesis is focused on realization of three inrush current limitors samples. This limiters will be used in ABB´s metal-clad, air-insulated switchgears for medium voltage distribution. On the basis of the results there is chosen the sample with optimal properties suitable for practice in the conclusion.
5

Budiče spínacích výkonových tranzistorů GaN MOSFET / Drivers for power switching transistors GaN MOSFET

Fiala, Zbyněk January 2016 (has links)
The thesis describes the procedure during the proposal of the driver circuits for the GaN MOSFET transistors, which are known for their fast switching especially. In the first instance of this thesis the issue of GaN MOSFET transistors is described and also the thesis describes the different types of MOSFET transistors in the way of their electrical and mechanical attributes. The specific type driver circuit is stated in the thesis, which was selected in the semestral thesis. For this circuit the boost converter with an output power 600W and high switching frequency 800kHz was proposed as an attempt measurement circuit. This boost converter was measured after its construction was done. The waveforms captured by the oscilloscope are commented also. In the conclusion the assessment is done about this new technology of power switching transistors.

Page generated in 0.0409 seconds