Spelling suggestions: "subject:"body temperature measurement"" "subject:"vody temperature measurement""
1 |
COMPARISON OF INTRACARDIAC CORE TEMPERATURES WITH RECTAL TEMPERATURES IN CRITICALLY ILL PATIENTS.Walker, Lynda Elaine. January 1984 (has links)
No description available.
|
2 |
MEASUREMENT OF TOE TEMPERATURE AS AN EARLY INDICATOR OF ALTERATIONS IN PERIPHERAL PERFUSION (MONITORING, SHOCK).Flodquist, Gail Linnea. January 1985 (has links)
No description available.
|
3 |
Short range, RF telemetry for physiological temperature acquisitionMcCreesh, Zita M. January 1995 (has links)
No description available.
|
4 |
Estimation of three-dimensional temperature fields from a limited number of transient temperature measurements during hyperthermia.Clegg, Scott Tom. January 1988 (has links)
In this dissertation, a new reconstruction algorithm to estimate the complete temperature field during hyperthermia is developed which relies upon a limited amount of transient measured temperature data. The predictive capabilities of this new algorithm are then systematically studied; first using one-dimensional simulated treatments, then using three-dimensional simulated treatments, and finally applying it to hyperthermia treatments of normal canine thighs. It was found that this new algorithm predicts the complete temperature fields more accurately and robustly than the steady-state approach. In particular, it can better predict the complete temperature fields in situations where the number of unknown blood perfusion parameters are greater than the number of available temperature sensors. It was also found that the steady-state temperature field could be estimated to within 1°C if there was no measurement noise, no model mismatch, and as few as three measurement locations for seven perfusion zones. The addition of measurement noise degraded the performance of this estimation algorithm especially when the number of measurement locations was small. It was found that use of Tikhonov regularization of order zero significantly improved the performance of the algorithm and that there was an optimal choice for the regularization parameter. For the animal experiments, normal canine thighs were instrumented with one-hundred twelve thermocouples and heated to steady-state using a 6 cm planar ultrasound transducer operating at 0.5 MHz: then the power was turned off and the transient cool down temperature data was stored for later use by the reconstruction algorithm. Only a subset of the one-hundred twelve measurements was used as input to the reconstruction algorithm. The remaining measurements were used to compare the results of the reconstruction algorithm with the true temperatures. The results showed that in general the predicted perfusion and reconstructed temperature field did not change significantly as sensors were removed. However, the error was quite large for some of the situations studied particularly when only twenty-seven piecewise constant regions of perfusion were used. Increasing the number of perfusion regions reduced this error suggesting that model mismatch had contributed significantly to the error.
|
5 |
MEASUREMENT OF AXILLARY TEMPERATURES IN NEONATESHunter, Lauren Patrice. January 1987 (has links)
No description available.
|
6 |
EFFECT OF NASAL OXYGEN ON ORAL TEMPERATURES OF FEBRILE AND AFEBRILE ADULTS.Stanton, Christina Louise. January 1984 (has links)
No description available.
|
7 |
Measurement of the temperature dependence of a fluorescent decay and its application to thermometrySholes, Robert Richard January 1980 (has links)
No description available.
|
8 |
The development of instrumentation for the direct measurement of heat loss from man in a normal working mode.Hodgson, T. January 1974 (has links)
Based on a theoretical analysis of the heat transfer process between the human body and its environment, graphs are presented for determining the theoretical skin surface temperatures and sweat rates as a function of the physiological conductance, under certain assumed environmental conditions with regard to air temperature, relative humidity and wind speed. In addition, the development of unique measuring techniques for the direct measurement of the evaporative and radiative heat transfer rates between a human body in a natural working position and its environment as well as the development of a low-cos~ radiometer for the measurement of the emissivity and temperature of human skin are described. The heat loss measuring equipment was installed in the horizontal test section of the climatic chamber of the Human Sciences Laboratory of the Chamber of Mines. Basically the evaporative heat loss measuring system consists of two air-sampling probes, for sampling the air on the upstream and downstream sides of the body , a double circuit heat exchanger, for equalising the dry- bulb temperatures of the two air samples and a differential humidity- measuring system incorporating electrical resistance hygrometero, for measuring the difference in specific humidity between the two air samples. In addition, a steam generator is provided for introducing a known amount of steam at a predetermined rate into the wake of the body. Since the output of the humidity-measuring system is linearly related to the evaporative heat loss rate, the unknown rate of evaporation of moisture from the human body can be determined relatively easily from a knowledge of the respective outputs of the humidity-measuring system due to the moisture evaporation rate of the human body and the known vapour production rate by the steam generator. The direct- measuring instrument for determining the radiation energy exchange rate of a working subject is in the form of a rotating hoop. The inside and outside surfaces of the hoop are lined with thermal radiation-sensing elements, so connected as to measure the net radiation energy exchange between the subject and the surroundings. The hoop integrates over the circular strip formed by the elements and upon rotation, integrates the radiation over the total 4n surface enveloping the subject . While the interposition of a surface between the body and its surroundings must of necessity influence the radiation exchange, the method introduces a small surface only . The significance of the evaporative and radiative heat loss measuring techniques which were successfully used in animate studies, is reflected in the, hitherto unknown, accuracy regarding partial calorimetric studies . The low- cost radiometer for measuring the skin temperature and emissivity is equipped with two non-selective thermal radiation detectors in the form of semi-conductor thermocouples. The one radiation-sensing element faces a built-in reference black body. The other detector, which can be temperature controlled, is used to detect the incoming radiation from the target. The output of the radiation-sensing elements which is sufficiently high to be measured on a recorder without the use of a chopper-amplifier system, can either be measured differentially or the output of the radiation-sensing element facing the target can be measured separately; for the purpose of temperature and emissivity measurements, respectively. The unique facility of being able to vary the temperature of the radiation detector enabled a new method of determining the emissivity of a surface to be developed. As a result, accurate measurements of the emissivities of samples of excised skin could be carried out. An improvement in the response of the radiometer would, however, be necessary for the rapid determination of the emissivity of . living skin by this means. The accuracy with which surface temperatures could be determined by means of the radiometer compared favourably with more sophisticated radiometers. / Thesis (Ph.D.)-University of Natal, Durban, 1974.
|
9 |
The association between the degree of leanness or obesity in children and the difference between their axillary and rectal temperaturesJordan, Glenda Louise January 1981 (has links)
No description available.
|
10 |
TACTILE ASSESSMENT OF TEMPERATURE OF THE POST-ANESTHESIA PATIENT.Thornton, Susan Ruth. January 1984 (has links)
No description available.
|
Page generated in 0.0883 seconds