• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 24
  • 17
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 36
  • 25
  • 16
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A methodology to investigate the cause of quenching in once-through tower type power plant boilers

De Klerk, Gary 21 January 2021 (has links)
Due to the penetration of variable renewable energy (VRE) sources, conventional coal fired power plants need to operate with greater flexibility via two-shifting or low load operation whilst remaining reliable and conserving the lifetime of components. Thick sectioned components are prone to thermal fatigue cracking as a result of through-wall temperature gradients during start up and shutdown. These temperature gradients can be significantly amplified during quenching when components at high temperature are unintentionally exposed to colder liquid or steam. Such quench events are known to occur during two-shift operation of a large once-through coal fired tower type boiler, which is the subject of this study. The purpose of this study is to develop and demonstrate a methodology to determine the root cause of quenching in a once-through tower type boiler and provide information that can be used to predict the impact on thick-walled components by estimating the through-wall temperature gradients. The first modelling element in the methodology is a simplified transient heat transfer model for investigating condensation of steam in the superheater. The model is presented and verified by comparison with real plant data. The second element is a liquid tracking model that approximates the liquid level in the superheater as a function of time to predict the location and magnitude of through-wall temperature gradients. The complex geometry of the superheater was divided into a number of control volumes and a dynamic thermo-fluid process model was developed to solve the transient conservation of mass and energy equations for each volume using a semi-implicit time wise integration scheme. The liquid tracking model was verified by comparison with a similar model constructed in Flownex and also by comparison with plant data. Varying levels of discretisation were applied to a particular quench event and the results are presented. The third modelling element is a two-dimensional transient pipe wall conduction model that is used at selected localities to evaluate the temperature gradients within the pipe wall. The temperature gradients and internal heat flux were verified by temperature measurements from the outer surface of a main steam pipe undergoing quenching. The stresses associated with the temperature gradients were also briefly considered. The real plant quenching problem is analysed in detail and found to be caused by liquid overflow from the separators. A particular plant configuration creates a previously unidentified siphon of water from the separating and collecting vessel system into the superheater. This situation is not recognised by plant operators and thus persists for some time and causes flooding of the superheater. Analysis of the resultant through-wall temperature gradients show that quenching causes significant stresses which can be avoided. By understanding the causes and preventing the occurrence of quenching, the life of thick-walled high temperature components can be conserved.
32

Economics of wood, natural gas, and coal fired boilers under alternative land and air pollution standards : three Ohio cases /

Gowen, Marcia M. January 1983 (has links)
No description available.
33

Failure and fracture at low creep temperatures

Kwon, Ohgeon January 1998 (has links)
No description available.
34

A systematic approach to fireside boiler tube investigations

Broodryk, Gideon Jacobus 31 August 2016 (has links)
Submitted for t he MASTERS OF SCIENCE Chemistry in the Department of Chemistry UNIVERSITY of the Witwatersrand December 1995
35

Physical modelling of mixing between rectangular jets present in tangentially fired brown coal boilers.

Scarsella, Alessio Angelo January 2007 (has links)
Large scale power generation commences with the combustion of coal or other fuel, which in turn converts high pressure water into steam which then drives a turbine thus generating electricity. Burning high moisture coal, such as lignite, for power generation implies that a significant amount of energy is wasted in vaporising the moisture, which could otherwise be used in the steam raising process. This implies that more moist coal would be required to drive the same process than if the coal was drier, thus increasing the amount of combustion products such as greenhouses gases. Introducing a dried coal in an existing boiler will significantly change the heat flux profiles, which could result in boiler damage or excessive fouling. Flame temperature is influenced by the supply of reactants; in most cases the limiting reactant will be oxygen. The supply of oxygen (through air) to a pneumatically transported coal stream and subsequent reaction is controlled by the localised fluid mechanics or ‘mixing’. This research aims to provide an understanding of the mixing process between the pneumatically transported coal and air in brown coal fired boilers by modelling the individual jets. The effects of the change in velocity ratio for the air (secondary) jets and fuel (primary) jets of rectangular burners typical of those found in brown coal fired boilers has been studied experimentally and is reported in this thesis. In particular, scientific analysis was used to investigate the physical mechanisms which control fuel-air mixing, and to quantify the concentration of primary and secondary fluid. The concentration data was used in a regression model in conjunction with a reactive combustion model, developed from a 1:30 scale cold model of the Yallourn W’ stage 2 boiler, in order that overall boiler performance can be assessed. This overall study is fundamental as a result of the questions raised concerning the future of brown coal in modern society. A qualitative flow visualisation study of the unconfined 1:30 scaled primary, and two adjacent rectangular jets, was conducted using single colour planar laser induced fluorescence. The characteristics of the jet flow were examined by imaging individually seeded primary and secondary jets and were visualised through four different planes longitudinally, on the axes of each jet. In addition, a transverse qualitative and quantitative study on the rectangular jets was also conducted for the individually seeded jets, and was visualised through planes of flow perpendicular to the direction flow, specifically at axial stations of x/D =0.1, 0.2, 0.5, 1, 2, 4, 6 and 8. The flow characteristics were also examined under different co-flow conditions, particularly secondary to primary jet velocity ratios (λ) of 0, 0.55, 1.4, 2.8, 3.6 and ∞. This quantitative data yields the basis for a 3D regression model to predict fuel-air mixing in actual boilers. A semi-quantitative investigation into some geometrical modifications on the rectangular jets was also conducted at velocity ratios of λ=0, 0.55 and 1.4. The rectangular nozzles were fitted with base plates orientated at 90 degrees and 60 degrees to the direction of flow. The longitudinal flow visualisation study highlighted the effect of velocity ratio on the flow field of the primary and secondary jets. In particular it showed that the main structures of the primary and secondary jets are sensitive to the co-flowing conditions. The primary jet also experienced the formation of coherent structures close to the bluff body re-circulation region for λ>2.8. The quantitative transverse analysis of the rectangular jets showed that the primary jet and secondary jets close to the nozzle exit plane distorted with a change in co-flowing conditions. The primary jet experienced distortion for λ>1.4, and the secondary jets experienced distortion for λ <1.4. A plausible mechanism for this “distortion” can be explained by different co-flowing conditions altering the velocity gradients of the jet, thus changing the denomination of the counter rotating vortices present in the corners of rectangular jets, allowing them to alter jet shape. The transverse quantitative analysis of the rectangular jets allowed for graphical representation of the normalised concentration of the primary and secondary jets in the radial direction and the centreline mixture fraction decay. The analysis of the latter showed that the primary jet, under all co-flow conditions, reached self-similarity at approximately x/D =4, whereas the secondary jets did so at x/D =2. The primary jets observed greater rates of centreline dilution at high velocity ratios, whereas the secondary jets did so at λ=0.55. The quantification of the centreline concentration decay obeyed the inverse rate law for all co-flowing conditions. The first order decay constant K₁, was found to be heavily dependant on velocity ratio. The planar transverse quantitative data of the primary and secondary jets was used with the method of weighted squares to develop a regression model that would three-dimensionally reproduce the scalar mixing field as a function of velocity ratio. The regression model reproduces scalar quantities for λ=0 and λ=0.55 to 3.6 for the primary jet and λ=0.55 to 3.6 and ∞ for the secondary jet, and is capable of predicting primary and secondary bulk fluid concentrations within 30 to 40 % of the measured values. A sensitivity analysis on the regression model revealed that it is highly responsive to the momentum-controlling region between the jets with a change in velocity ratio. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297627 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2007
36

Physical modelling of mixing between rectangular jets present in tangentially fired brown coal boilers.

Scarsella, Alessio Angelo January 2007 (has links)
Large scale power generation commences with the combustion of coal or other fuel, which in turn converts high pressure water into steam which then drives a turbine thus generating electricity. Burning high moisture coal, such as lignite, for power generation implies that a significant amount of energy is wasted in vaporising the moisture, which could otherwise be used in the steam raising process. This implies that more moist coal would be required to drive the same process than if the coal was drier, thus increasing the amount of combustion products such as greenhouses gases. Introducing a dried coal in an existing boiler will significantly change the heat flux profiles, which could result in boiler damage or excessive fouling. Flame temperature is influenced by the supply of reactants; in most cases the limiting reactant will be oxygen. The supply of oxygen (through air) to a pneumatically transported coal stream and subsequent reaction is controlled by the localised fluid mechanics or ‘mixing’. This research aims to provide an understanding of the mixing process between the pneumatically transported coal and air in brown coal fired boilers by modelling the individual jets. The effects of the change in velocity ratio for the air (secondary) jets and fuel (primary) jets of rectangular burners typical of those found in brown coal fired boilers has been studied experimentally and is reported in this thesis. In particular, scientific analysis was used to investigate the physical mechanisms which control fuel-air mixing, and to quantify the concentration of primary and secondary fluid. The concentration data was used in a regression model in conjunction with a reactive combustion model, developed from a 1:30 scale cold model of the Yallourn W’ stage 2 boiler, in order that overall boiler performance can be assessed. This overall study is fundamental as a result of the questions raised concerning the future of brown coal in modern society. A qualitative flow visualisation study of the unconfined 1:30 scaled primary, and two adjacent rectangular jets, was conducted using single colour planar laser induced fluorescence. The characteristics of the jet flow were examined by imaging individually seeded primary and secondary jets and were visualised through four different planes longitudinally, on the axes of each jet. In addition, a transverse qualitative and quantitative study on the rectangular jets was also conducted for the individually seeded jets, and was visualised through planes of flow perpendicular to the direction flow, specifically at axial stations of x/D =0.1, 0.2, 0.5, 1, 2, 4, 6 and 8. The flow characteristics were also examined under different co-flow conditions, particularly secondary to primary jet velocity ratios (λ) of 0, 0.55, 1.4, 2.8, 3.6 and ∞. This quantitative data yields the basis for a 3D regression model to predict fuel-air mixing in actual boilers. A semi-quantitative investigation into some geometrical modifications on the rectangular jets was also conducted at velocity ratios of λ=0, 0.55 and 1.4. The rectangular nozzles were fitted with base plates orientated at 90 degrees and 60 degrees to the direction of flow. The longitudinal flow visualisation study highlighted the effect of velocity ratio on the flow field of the primary and secondary jets. In particular it showed that the main structures of the primary and secondary jets are sensitive to the co-flowing conditions. The primary jet also experienced the formation of coherent structures close to the bluff body re-circulation region for λ>2.8. The quantitative transverse analysis of the rectangular jets showed that the primary jet and secondary jets close to the nozzle exit plane distorted with a change in co-flowing conditions. The primary jet experienced distortion for λ>1.4, and the secondary jets experienced distortion for λ <1.4. A plausible mechanism for this “distortion” can be explained by different co-flowing conditions altering the velocity gradients of the jet, thus changing the denomination of the counter rotating vortices present in the corners of rectangular jets, allowing them to alter jet shape. The transverse quantitative analysis of the rectangular jets allowed for graphical representation of the normalised concentration of the primary and secondary jets in the radial direction and the centreline mixture fraction decay. The analysis of the latter showed that the primary jet, under all co-flow conditions, reached self-similarity at approximately x/D =4, whereas the secondary jets did so at x/D =2. The primary jets observed greater rates of centreline dilution at high velocity ratios, whereas the secondary jets did so at λ=0.55. The quantification of the centreline concentration decay obeyed the inverse rate law for all co-flowing conditions. The first order decay constant K₁, was found to be heavily dependant on velocity ratio. The planar transverse quantitative data of the primary and secondary jets was used with the method of weighted squares to develop a regression model that would three-dimensionally reproduce the scalar mixing field as a function of velocity ratio. The regression model reproduces scalar quantities for λ=0 and λ=0.55 to 3.6 for the primary jet and λ=0.55 to 3.6 and ∞ for the secondary jet, and is capable of predicting primary and secondary bulk fluid concentrations within 30 to 40 % of the measured values. A sensitivity analysis on the regression model revealed that it is highly responsive to the momentum-controlling region between the jets with a change in velocity ratio. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297627 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2007
37

Design of a solar powered high-pressure steam generator

Cordy, Clifford B., 1938- 02 March 1995 (has links)
The design of a point focus, distributed receiver solar power system is presented. It is shown that a two axis concentrator, with a two axis solar tracker and drive, has significant advantages over other possible optical systems. It is further shown that each concentrator should have its own optical receiver attached. A new dish and mount design is presented. This design provides a much stronger, lower cost dish. It further provides an easy way to attach a cheap drive system. The new mount is a gimbal, or cradle, in which the dish is mounted. The cradle provides a polar axis mount for the dish. The dish and cradle are very strong and will survive high winds in any orientation. Several other significant improvements to other parts of the solar energy collection system are presented. These include an improvement to the receiver cavity design, a thermal shield and secondary reflector to be added to the receiver, an improved steam output system for the receiver, a plumbing system that eliminates the need for flexible couplings in the water lines, and a water distribution system that eliminates nearly half of the thermal insulation needed on the pipes going through the collector array. Two economic optimizations are presented. The first analyses the return on investment for various dish spacings. The second analyses the cost per unit area of the concentrator dish and mount. It is found that the optimum dish diameter is ten meters and the optimum packing density in a conventional array is about 13%. / Graduation date: 1995
38

A Study of fume particle deposition

Goerg, Kristin A. 01 January 1989 (has links)
No description available.
39

Fly ash particle formation in kraft recovery boilers /

Mikkanen, Pirita. January 2000 (has links) (PDF)
Thesis (doctoral)--Helsinki University of Technology, 2000. / Includes bibliographical references. Also available on the World Wide Web.
40

Experimental investigation of condensation phenomena inside a U-tube steam generator /

Collins, Brian A. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 84-85). Also available on the World Wide Web.

Page generated in 0.0246 seconds