Spelling suggestions: "subject:"one narrow cotransplantation (BMT)"" "subject:"one narrow autransplantation (BMT)""
1 |
TUMOR NECROSIS FACTOR ALPHA (TNFα) in SANDHOFF DISEASE PATHOLOGYAbou-Ouf, Hatem A. 17 September 2014 (has links)
<p><strong>Abstract</strong></p> <p>Sandhoff disease (SD) is a monogenic lysosomal storage disorder caused by a lack of a functional β-subunit of the beta-hexosaminidase A and B enzymes. The clinical phenotype of <em>Hexb</em><sup>-/-</sup>mouse model recapitulates the symptoms and signs of Tay-Sachs and Sandhoff diseases in human. To gain insight into the neuropathology of Sandhoff disease, we defined the role of TNFα in the development and progression of Sandhoff disease pathology in mice, by generating a <em>Hexb<sup>-/-</sup>Tnf</em><em>a</em><em><sup>-/-</sup></em> double knock-out mouse. Behavioural testing and immunostaining data revealed the neurodegenerative role of TNFα in disease pathology. Double knock-out mice showed ameliorated clinical course, with prolonged life span. TNFα-deficient Sandhoff mice also demonstrate decreased levels of astrogliosis, and reduced neuronal cell death. Deletion of <em>Tnfα</em> in Sandhoff mice inhibited JAK2/STAT3 pathway, implicating its role in glia cell activation. This result points to TNFa as a potential therapeutic target to attenuate neuro-pathogenesis.</p> <p>To investigate whether blood-derived or CNS-derived TNFα has the major impact on neurological function, we transplanted <em>Hexb<sup>-/-</sup>Tnfα<sup>+/+</sup></em> with bone marrow from either <em>Hexb<sup>-/-</sup>Tnfα<sup>-/-</sup></em>or <em>Hexb<sup>-/-</sup>Tnf</em><em>a</em><em><sup>+/+</sup></em> mice donors. Neurological tests shows a significant clinical improvement for Hexb<em><sup>-/-</sup>Tnfα<sup>-/-</sup></em> compared to <em>Hexb<sup>-/-</sup>Tnf</em><em>a</em><em><sup>+/+</sup></em> recipient, regardless the genotype of donor cells. These findings highlight the importance of resident-derived TNFα during the robust neurodegenerative consequences in Sandhoff disease. To understand of the role of microRNAs in Sandhoff pathology, we investigated the miRNA profile in Sandhoff brains. A pattern of dys-regulated microRNAs was evident in Sandhoff CNS. Microarray identified miR-210 and miR-96 dys-regulated pattern in the CNS of Sandhoff mice. Strikingly, neuronal pentraxin, a putative target gene for miR-210, was induced in Sandhoff brains.</p> <p>Taken together, this work establishes the proinflammatory role of TNFα in Sandhoff pathology, leading to massive neuro-apoptosis. Importantly, our studies propose that neuronal pentraxin as a novel target gene for microRNA-210 in Sandhoff brain samples, providing a potential modulator of neurodegeneration.</p> / Doctor of Philosophy (PhD)
|
Page generated in 0.1018 seconds