• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Retrovirus-mediated Gene Therapy For Farber Disease

Ramsubir, Shobha 01 August 2008 (has links)
Farber disease is a rare lysosomal storage disease (LSD) caused by a deficiency of acid ceramidase (AC). Patients show a classic triad of symptoms including subcutaneous granulomas, laryngeal involvement and painful swollen joints. The most common and severe form has neurological manifestations and patients typically die by the age of two. Current treatment consists of symptomatic supportive care and allogeneic bone marrow transplantation (BMT). However, BMT has shown limited success. Gene therapy has previously been shown to be a promising treatment strategy for monogenetic diseases and has the potential to treat the underlying cause of the disease. Presented here is the first report of in vivo testing of retrovirus-mediated gene therapy strategies for the treatment of Farber disease. Retroviral vectors were engineered to overexpress AC and a cell surface marker, human CD25. Transduction with these viral vectors corrected the enzymatic defect in Farber patient cells and in vivo administration of the lentiviral vector led to long-term expression of the marking transgene as well as increased AC expression in the liver. To determine the effect of over-expression of AC, human CD34+ cells were transduced and transplanted into NOD/SCID animals. It was found that transgene-expressing cells could reconstitute the host. To address the neurological manifestations of Farber disease, vascular endothelial growth factor (VEGF) was investigated as an agent to transiently open the blood brain barrier for entry of lentivirus. It was found that in addition to increasing the amount of therapeutic virus in the brain, VEGF treatment also increased transduction in other organs. Further, to address the concerns of insertional mutagenesis associated with using integrating vectors, an immunotoxin-based strategy was developed as a safety system to clear transduced cells. It was found that a CD25-targeted immunotoxin could eliminate both transduced hematopoietic cells as well as tumor cells over-expressing CD25. This strategy can be employed following gene therapy should an unwanted proliferative event occur. Together, these studies represent considerable advances towards the development of a cure for Farber disease, demonstrating both therapeutic potential and also containing a built-in safety system.
2

Retrovirus-mediated Gene Therapy For Farber Disease

Ramsubir, Shobha 01 August 2008 (has links)
Farber disease is a rare lysosomal storage disease (LSD) caused by a deficiency of acid ceramidase (AC). Patients show a classic triad of symptoms including subcutaneous granulomas, laryngeal involvement and painful swollen joints. The most common and severe form has neurological manifestations and patients typically die by the age of two. Current treatment consists of symptomatic supportive care and allogeneic bone marrow transplantation (BMT). However, BMT has shown limited success. Gene therapy has previously been shown to be a promising treatment strategy for monogenetic diseases and has the potential to treat the underlying cause of the disease. Presented here is the first report of in vivo testing of retrovirus-mediated gene therapy strategies for the treatment of Farber disease. Retroviral vectors were engineered to overexpress AC and a cell surface marker, human CD25. Transduction with these viral vectors corrected the enzymatic defect in Farber patient cells and in vivo administration of the lentiviral vector led to long-term expression of the marking transgene as well as increased AC expression in the liver. To determine the effect of over-expression of AC, human CD34+ cells were transduced and transplanted into NOD/SCID animals. It was found that transgene-expressing cells could reconstitute the host. To address the neurological manifestations of Farber disease, vascular endothelial growth factor (VEGF) was investigated as an agent to transiently open the blood brain barrier for entry of lentivirus. It was found that in addition to increasing the amount of therapeutic virus in the brain, VEGF treatment also increased transduction in other organs. Further, to address the concerns of insertional mutagenesis associated with using integrating vectors, an immunotoxin-based strategy was developed as a safety system to clear transduced cells. It was found that a CD25-targeted immunotoxin could eliminate both transduced hematopoietic cells as well as tumor cells over-expressing CD25. This strategy can be employed following gene therapy should an unwanted proliferative event occur. Together, these studies represent considerable advances towards the development of a cure for Farber disease, demonstrating both therapeutic potential and also containing a built-in safety system.
3

Innate and Adaptive Immune Activation in the Brain of MPS IIIB Mouse Model

DiRosario, Julianne, Divers, Erin, Wang, Chuansong, Etter, Jonathan, Charrier, Alyssa, Jukkola, Peter, Auer, Herbert, Best, Victoria, Newsom, David L., McCarty, Douglas M., Fu, Haiyan 01 June 2009 (has links)
Mucopolysaccharidosis (MPS) IIIB is a lysosomal storage disease with severe neurological manifestations due to a-N-acetylglucosaminidase (NaGlu) deficiency. The mechanism of neuropathology in MPS IIIB is unclear. This study investigates the role of immune responses in neurological disease of MPS IIIB in mice. By means of gene expression microarrays and realtime quantitative reverse transcriptase-polymerase chain reaction, we demonstrated significant up-regulation of numerous immune-related genes in MPS IIIB mouse brain involving a broad range of immune cells and molecules, including T cells, B cells, microglia/ macrophages, complement, major histocompatibility complex class I, immunoglobulin, Toll-like receptors, and molecules essential for antigen presentation. The significantly enlarged spleen and lymph nodes in MPS IIIB mice were due to an increase in splenocytes/lymphocytes, and functional assays indicated that the T cells were activated. An autoimmune component to the disease was further suggested by the presence of putative autoantigen or autoantigens in brain extracts that reacted specifically with serum IgG from MPS IIIB mice. We also demonstrated for the first time that immunosuppression with prednisolone alone can significantly slow the central nervous system disease progression. Our data indicate that immune responses contribute greatly to the neuropathology of MPS IIIB and should be considered as an adjunct treatment in future therapeutic developments for optimal therapeutic effect.
4

Transfert de gènes dans un modèle murin de la maladie de Sandhoff à l'aide d'un vecteur scAAV9 : intérêt d'une double voie d'administration ? / Gene transfer in murine model of Sandhoff disease using a scAAV9 vector : interest of double way of administration ?

Rouvière, Laura 27 October 2017 (has links)
La maladie de Sandhoff est une maladie génétique rare due à des mutations du gène HEXB. Elle se caractérise par un double déficit en hexosaminidase A (αβ) et B (ββ), responsable d’une accumulation de ganglioside GM2 essentiellement dans le système nerveux central (SNC). Cliniquement, la maladie débute dès les premiers mois de vie et le décès survient vers l’âge de 3 ans. A ce jour, aucun traitement n’est disponible pour cette maladie. Le modèle murin obtenu par invalidation du gène Hexb est un bon outil pour le développement d’approches thérapeutiques, car il présente un phénotype proche de la maladie humaine. Le but principal de mon projet de thèse était d’explorer une approche de transfert de gène dans le modèle murin de la maladie de Sandhoff en utilisant un vecteur scAAV9. Ce vecteur a la particularité de pouvoir traverser la barrière hématoencéphalique et de transduire le SNC après administration intraveineuse (IV). Un vecteur codant la chaîne β des hexosaminidases, appelé scAAV9-Hexb, a précédemment été administré par voie IV à des souris en période néonatale à une dose de 3,5 x 1013 vg/kg. Les souris traitées ont survécu comme les souris normales (>700 jours) sans développer d’atteinte neurologique, ni périphérique alors que les souris Sandhoff non traitées sont décédées vers l’âge de 4 mois. J’ai réalisé toutes les analyses à long terme des souris traitées en utilisant des tests de comportements, ainsi que des analyses tissulaires 24 mois après le traitement. Une analyse lipidique par HPTLC a montré que la surcharge en ganglioside GM2 est totalement absente au niveau du cerveau (4 mois après l'injection), alors que dans le cervelet cette accumulation est non significative, mais pas totalement absente. Aucun symptôme lié à cette surcharge n’a été mis en évidence chez les souris à 24 mois, mais nous nous sommes posé la question d’un possible effet délétère à long terme en cas d’extrapolation à la clinique. Nous avons donc décidé de tester une double administration IV + ICV (intracérébroventriculaire) en utilisant le même vecteur et la même dose globale de façon à mieux corriger le cervelet. Deux groupes de souris ont été injectés en période néonatale en utilisant des doses différentes dans les deux compartiments. Les analyses ont montré que dans le cerveau, à court terme, la restauration de l’activité enzymatique est partielle, mais significative. Par ailleurs, il existe une absence totale de surcharge en GM2, ainsi qu’une correction des biomarqueurs associés à la maladie. Dans le cervelet, l’efficacité du traitement a été montrée seulement pour le groupe traité avec la dose la plus importante en ICV, ce qui suggère qu’une dose minimale en ICV est nécessaire pour atteindre de manière globale le SNC. Ces résultats ont été confirmés par l’analyse à long terme. Concernant le foie, nos résultats ont montré qu’une dose IV minimale est nécessaire pour obtenir une baisse de l’accumulation lipidique. Ce travail a permis de définir les doses minimales nécessaires dans chaque compartiment (IV et ICV) et il montre que la double administration peut être avantageuse pour traiter toutes les régions du SNC et notamment les plus atteintes, comme le cervelet. Il va maintenant nous permettre de traiter de façon optimale les souris adultes. L’autre but de mon projet était d’explorer les défauts de signalisation et la physiopathologie cellulaire dans la maladie de Sandhoff en utilisant des études in vivo et in vitro. Les études in vitro ont été réalisées sur des fibroblastes de patients et des cellules embryonnaires murines (MEF) obtenues à partir des souris Hexb-/- et la surcharge lysosomale a été confirmée dans ces cellules. La voie mTOR (mammalian target of rapamycin) a été analysée et nous avons montré qu’elle était dérégulée. L’activité autophagique a aussi été étudiée et nous avons mis en évidence une augmentation du nombre d’autophagosomes chez les souris Hexb-/- suggérant un défaut de cette voie. (...) / Sandhoff disease (SD) is a genetic disorder due to mutations in the HEXB gene. It is characterized by a double Hex A (αβ) and B (ββ) deficiency, responsible for a GM2 accumulation, mainly in the central nervous system (CNS). Clinically, SD begins in the first months of life and culminates in death around 3 years of age. So far, no specific treatment is available for Sandhoff disease. The murine model obtained by invalidation of the Hexb gene is a useful tool for the development of therapeutic approaches, as it exhibits a phenotype quite close to the human disease. The main aim of my PhD project was to explore a gene transfer approach in Sandhoff mice using a specific scAAV9. This vector has the particularity to cross the blood-brain barrier after intravenous (IV) administration and to transduce brain. A vector encoding the hexosaminidases β chain, called scAAV9-Hexb, has been previously IV injected in neonatal Hexb-/- mice with a dose of 3.5 x 1013 vg/kg. I participated to the long-term analysis of the scAAV9-Hexb treated mice using behavioral tests and analysis of tissues at 24 months post-injection. Mice had a survival similar to normal mice (>700 days) without neurological sign and peripheral damage by comparison with naïve Sandhoff mice (death around 120 days). At 4 months post-treatment, lipid analysis using HPTLC showed that GM2 storage was absent in brain, but it was only decreased in cerebellum of treated mice. Even if no symptom was associated with this residual storage in mice at 2 years, we wondered if it could possibly be pathogenic at longer-term if extrapolated to patients. Therefore, we decide to test a combined way of administration i.e. intravenous (IV) + intracerebroventricular (ICV) using the same vector with the same final dose. Two groups of mice were injected using different doses in both compartments and treatment efficacy was evaluated at short- and long-term. In the cerebrum, at short-term, enzymatic activities were partially but significantly restored, GM2 accumulation was completely prevented and disease biomarkers corrected. In the cerebellum, a significant increase of enzymatic activity was only obtained for the group treated with the highest dose in the ICV compartment. Regarding GM2 analysis and long-term behavioral analysis, we confirmed that this dose is required to cure cerebellum. In liver, our results suggest that IV minimal dose is needed to obtain a decrease of lipid accumulation. Our results showed that minimal doses are required in ICV and IV to obtain a good efficacy in each compartments, and that combined administration permit a widespread correction in the CNS. These data will permit to treat adult mice with the optimal treatment. The other goal of my project was to explore signaling defects and cellular pathophysiology in Sandhoff disease using in vivo and in vitro studies. For in vitro studies, fibroblasts from Tay-Sachs and Sandhoff patients were analyzed and mouse embryonic fibroblasts (MEF) were obtained from the Hexb-/- murine model, lysosomal storage was confirmed. mTOR (mammalian target of rapamycin) pathway was studied showing signaling deregulation. Autophagy was analyzed in vitro and in vivo, as defect in this pathway has been reported in other lysosomal storage disorders. An increase of autophagosomes number was observed in Hexb-/- subjects suggesting a defect in autophagy. These results offer novel biomarkers of Sandhoff pathology which can be useful to test the efficacy of therapeutic approaches. They can also provide new therapeutic targets that could be tested in combination with gene transfer.
5

Investigação da capacidade antioxidante, perfil inflamatório e dano ao DNA em pacientes com Doença de Gaucher tratados com a terapia de reposição enzimática

Turcatel, Elias January 2015 (has links)
A doença de Gaucher (DG) é uma doença de armazenamento lisossômico causada por uma mutação no gene que codifica a enzima β-glicosidase, a deficiência dessa enzima provoca o acúmulo de glicosilceramidas nos lisossomos do sistema retículo endotelial. A DG é divididas em três tipos, o tipo I é a forma mais branda e mais prevalente da doença. As consequências desta doença incluem hepatoesplenomegalia, deficiências ósseas, manifestações hematológicas e neurodegeneração, porém os mecanismos fisiopatológicos ainda não estão totalmente esclarecidos. Portanto, a fim de esclarecer a fisiopatologia envolvida na DG, o presente estudo avaliou a produção de espécies reativas de oxigênio, as atividades da superóxido dismutase, catalase e glutationa peroxidase, os níveis de nitritos, os imunoconteúdos de iNOS e de pNF-kB, os danos ao DNA e o conteúdo sulfidrilas em diferentes componentes da sangue de indivíduos afetados. Os pacientes foram divididos em dois grupos: controles com diagnóstico negativo para DG e pacientes diagnosticados com DG tipo I, tratados com terapia de reposição enzimática. O sangue foi coletado 5 minutos antes do tratamento. Os resultados mostraram que a atividade de superóxido dismutase foi reduzida em eritrócitos, enquanto atividade da glutationa peroxidase foi aumentada no plasma de pacientes com DG. Os níveis de nitritos e o imunoconteúdo pNF-kB estavam significativamente aumentados no plasma e leucócitos, respectivamente. Ensaio do cometa foi realizada no sangue total e indicou danos no DNA. Observou-se também um dano oxidativo a proteínas, devido a redução do conteúdo sulfidrilas em plasma e eritrócitos. Nossos resultados sugerem que pacientes com DG, mesmo em tratamento, apresentam alteração no status oxidativo/nitrativo e parâmetros inflamatórios, bem como evidências de danos ao DNA no sangue, o que poderia ser, pelo menos em parte, associado à fisiopatologia da DG. / Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the gene encoding β-glucosidase enzyme, this enzyme deficiency leads to glucosylceramides accumulation in the lysosomes of the reticulum endothelial system. GD divided into three types, where in type I is the mildest and most prevalent form of disease. The consequences of this disease include hepatosplenomegaly, bone impairments, hematologic manifestations and neurodegeneration, but pathophysiology mechanisms are still not well elucidated. Therefore, in order to clarify the pathophysiology involved in GD, the present study evaluated reactive oxygen species production, superoxide dismutase, catalase and gluthatione peroxidase activities, nitrite levels, immunocontent of iNOS and pNF-κB, DNA damage and sulfhydryl content in differents components of blood from affected individuals.Patients were divided into two groups: controls with negative diagnosis to GD and patients diagnosed to GD type I treated with enzyme replacement therapy. Blood were collected 5 minutes before the treatment. Results showed that superoxide dismutase activity was reduced in erythrocytes while gluthatione peroxidase activity was increased in plasma of GD patients. Nitrite levels and pNF-κB immunocontent were significantly increased in plasma and leukocytes, respectively. Comet assay was performed in whole blood and indicated DNA damage. We also observed an oxidative damage to proteins elicited by decreased sulfhydryl content in plasma and erythrocytes. Our findings suggest that patients with GD, even in treatment, have altered oxidative/nitrative status and inflammatory parameters, as well as evidence of DNA damage in blood, what could be at least in part, associated with pathophysiology of GD.
6

Investigação da capacidade antioxidante, perfil inflamatório e dano ao DNA em pacientes com Doença de Gaucher tratados com a terapia de reposição enzimática

Turcatel, Elias January 2015 (has links)
A doença de Gaucher (DG) é uma doença de armazenamento lisossômico causada por uma mutação no gene que codifica a enzima β-glicosidase, a deficiência dessa enzima provoca o acúmulo de glicosilceramidas nos lisossomos do sistema retículo endotelial. A DG é divididas em três tipos, o tipo I é a forma mais branda e mais prevalente da doença. As consequências desta doença incluem hepatoesplenomegalia, deficiências ósseas, manifestações hematológicas e neurodegeneração, porém os mecanismos fisiopatológicos ainda não estão totalmente esclarecidos. Portanto, a fim de esclarecer a fisiopatologia envolvida na DG, o presente estudo avaliou a produção de espécies reativas de oxigênio, as atividades da superóxido dismutase, catalase e glutationa peroxidase, os níveis de nitritos, os imunoconteúdos de iNOS e de pNF-kB, os danos ao DNA e o conteúdo sulfidrilas em diferentes componentes da sangue de indivíduos afetados. Os pacientes foram divididos em dois grupos: controles com diagnóstico negativo para DG e pacientes diagnosticados com DG tipo I, tratados com terapia de reposição enzimática. O sangue foi coletado 5 minutos antes do tratamento. Os resultados mostraram que a atividade de superóxido dismutase foi reduzida em eritrócitos, enquanto atividade da glutationa peroxidase foi aumentada no plasma de pacientes com DG. Os níveis de nitritos e o imunoconteúdo pNF-kB estavam significativamente aumentados no plasma e leucócitos, respectivamente. Ensaio do cometa foi realizada no sangue total e indicou danos no DNA. Observou-se também um dano oxidativo a proteínas, devido a redução do conteúdo sulfidrilas em plasma e eritrócitos. Nossos resultados sugerem que pacientes com DG, mesmo em tratamento, apresentam alteração no status oxidativo/nitrativo e parâmetros inflamatórios, bem como evidências de danos ao DNA no sangue, o que poderia ser, pelo menos em parte, associado à fisiopatologia da DG. / Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the gene encoding β-glucosidase enzyme, this enzyme deficiency leads to glucosylceramides accumulation in the lysosomes of the reticulum endothelial system. GD divided into three types, where in type I is the mildest and most prevalent form of disease. The consequences of this disease include hepatosplenomegaly, bone impairments, hematologic manifestations and neurodegeneration, but pathophysiology mechanisms are still not well elucidated. Therefore, in order to clarify the pathophysiology involved in GD, the present study evaluated reactive oxygen species production, superoxide dismutase, catalase and gluthatione peroxidase activities, nitrite levels, immunocontent of iNOS and pNF-κB, DNA damage and sulfhydryl content in differents components of blood from affected individuals.Patients were divided into two groups: controls with negative diagnosis to GD and patients diagnosed to GD type I treated with enzyme replacement therapy. Blood were collected 5 minutes before the treatment. Results showed that superoxide dismutase activity was reduced in erythrocytes while gluthatione peroxidase activity was increased in plasma of GD patients. Nitrite levels and pNF-κB immunocontent were significantly increased in plasma and leukocytes, respectively. Comet assay was performed in whole blood and indicated DNA damage. We also observed an oxidative damage to proteins elicited by decreased sulfhydryl content in plasma and erythrocytes. Our findings suggest that patients with GD, even in treatment, have altered oxidative/nitrative status and inflammatory parameters, as well as evidence of DNA damage in blood, what could be at least in part, associated with pathophysiology of GD.
7

Investigação da capacidade antioxidante, perfil inflamatório e dano ao DNA em pacientes com Doença de Gaucher tratados com a terapia de reposição enzimática

Turcatel, Elias January 2015 (has links)
A doença de Gaucher (DG) é uma doença de armazenamento lisossômico causada por uma mutação no gene que codifica a enzima β-glicosidase, a deficiência dessa enzima provoca o acúmulo de glicosilceramidas nos lisossomos do sistema retículo endotelial. A DG é divididas em três tipos, o tipo I é a forma mais branda e mais prevalente da doença. As consequências desta doença incluem hepatoesplenomegalia, deficiências ósseas, manifestações hematológicas e neurodegeneração, porém os mecanismos fisiopatológicos ainda não estão totalmente esclarecidos. Portanto, a fim de esclarecer a fisiopatologia envolvida na DG, o presente estudo avaliou a produção de espécies reativas de oxigênio, as atividades da superóxido dismutase, catalase e glutationa peroxidase, os níveis de nitritos, os imunoconteúdos de iNOS e de pNF-kB, os danos ao DNA e o conteúdo sulfidrilas em diferentes componentes da sangue de indivíduos afetados. Os pacientes foram divididos em dois grupos: controles com diagnóstico negativo para DG e pacientes diagnosticados com DG tipo I, tratados com terapia de reposição enzimática. O sangue foi coletado 5 minutos antes do tratamento. Os resultados mostraram que a atividade de superóxido dismutase foi reduzida em eritrócitos, enquanto atividade da glutationa peroxidase foi aumentada no plasma de pacientes com DG. Os níveis de nitritos e o imunoconteúdo pNF-kB estavam significativamente aumentados no plasma e leucócitos, respectivamente. Ensaio do cometa foi realizada no sangue total e indicou danos no DNA. Observou-se também um dano oxidativo a proteínas, devido a redução do conteúdo sulfidrilas em plasma e eritrócitos. Nossos resultados sugerem que pacientes com DG, mesmo em tratamento, apresentam alteração no status oxidativo/nitrativo e parâmetros inflamatórios, bem como evidências de danos ao DNA no sangue, o que poderia ser, pelo menos em parte, associado à fisiopatologia da DG. / Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the gene encoding β-glucosidase enzyme, this enzyme deficiency leads to glucosylceramides accumulation in the lysosomes of the reticulum endothelial system. GD divided into three types, where in type I is the mildest and most prevalent form of disease. The consequences of this disease include hepatosplenomegaly, bone impairments, hematologic manifestations and neurodegeneration, but pathophysiology mechanisms are still not well elucidated. Therefore, in order to clarify the pathophysiology involved in GD, the present study evaluated reactive oxygen species production, superoxide dismutase, catalase and gluthatione peroxidase activities, nitrite levels, immunocontent of iNOS and pNF-κB, DNA damage and sulfhydryl content in differents components of blood from affected individuals.Patients were divided into two groups: controls with negative diagnosis to GD and patients diagnosed to GD type I treated with enzyme replacement therapy. Blood were collected 5 minutes before the treatment. Results showed that superoxide dismutase activity was reduced in erythrocytes while gluthatione peroxidase activity was increased in plasma of GD patients. Nitrite levels and pNF-κB immunocontent were significantly increased in plasma and leukocytes, respectively. Comet assay was performed in whole blood and indicated DNA damage. We also observed an oxidative damage to proteins elicited by decreased sulfhydryl content in plasma and erythrocytes. Our findings suggest that patients with GD, even in treatment, have altered oxidative/nitrative status and inflammatory parameters, as well as evidence of DNA damage in blood, what could be at least in part, associated with pathophysiology of GD.
8

Evaluation of new therapies in Niemann-Pick type C disease

Al Eisa, Nada January 2014 (has links)
No description available.
9

Multigene panel next generation sequencing in a patient with cherry red macular spot

Mütze, Ulrike, Bürger, Friederike, Hoffmann, Jessica, Tegetmeyer, Helmut, Heichel, Jens, Nickel, Petra, Lemke, Johannes R., Syrbe, Steffen, Beblo, Skadi 25 January 2017 (has links) (PDF)
Background: Lysosomal storage diseases (LSD) often manifest with cherry red macular spots. Diagnosis is based on clinical features and specific biochemical and enzymatic patterns. In uncertain cases, genetic testing with next generation sequencing can establish a diagnosis, especially in milder or atypical phenotypes. We report on the diagnostic work-up in a boy with sialidosis type I, presenting initially with marked cherry red macular spots but non-specific urinary oligosaccharide patterns and unusually mild excretion of bound sialic acid. Methods: Biochemical, enzymatic and genetic tests were performed in the patient. The clinical and electrophysiological data was reviewed and a genotype-phenotype analysis was performed. In addition a systematic literature review was carried out. Case report and results: Cherry red macular spotswere first noted at 6 years of age after routine screening myopia. Physical examination, psychometric testing, laboratory investigations aswell as cerebralMRIwere unremarkable at 9 years of age. So far no clinical myoclonic seizures occurred, but EEG displays generalized epileptic discharges and visual evoked potentials are prolonged bilaterally. Urine thin layer chromatography showed an oligosaccharide pattern compatible with different LSD including sialidosis, galactosialidosis, GM1 gangliosidosis or mucopolysaccharidosis type IV B. Urinary bound sialic acid excretion was mildly elevated in spontaneous and 24 h urine samples. In cultured fibroblasts, α-sialidase activity was markedly decreased to b1%; however, bound and free sialic acid were within normal range. Diagnosis was eventually established by multigene panel next generation sequencing of genes associated to LSD, identifying two novel, compound heterozygous variants in NEU1 gene (c.699CNA, p.S233R in exon 4 and c.803ANG; p.Y268C in Exon 5 in NEU1 transcriptNM_000434.3), leading to amino acid changes predicted to impair protein function. Discussion: Sialidosis should be suspected in patients with cherry red macular spots, even with non-significant urinary sialic acid excretion. Multigene panel next generation sequencing can establish a definite diagnosis, allowing for counseling of the patient and family.
10

Doença do armazenamento lisossomal induzida pelo consumo de Sida carpinifolia (Malvaceae) em herbívoros no Rio Grande do Sul / Lysosomal storage disease induced by the consumption of Sida carpinifolia (Malvaceae) in herbivores in Rio Grande do Sul

Pedroso, Pedro Miguel Ocampos January 2010 (has links)
Descrevem-se os achados epidemiológicos, clínico-patológicos, ultra-estruturais e lectino-histoquímicos de herbívoros intoxicados naturalmente por Sida carpinifolia no Estado do Rio Grande do Sul, Brasil. Este estudo incluiu a elaboração de três artigos. Foi realizado um estudo retrospectivo de intoxicação natural por Sida carpinifolia em bovinos no Rio Grande do Sul, outro relata pela primeira vez uma intoxicação natural por esta planta em um animal silvestre e o terceiro artigo relata os achados patológicos observados em fetos de fêmeas caprina e bovina que foram intoxicadas experimentalmente e naturalmente respectivamente por Sida carpinifolia. No primeiro artigo foram afetados cinco bovinos entre os anos de 2001 a 2008. O quadro clínico foi caracterizado por emagrecimento, incoordenação, dificuldade de locomoção, tremores generalizados, quedas frequentes e morte. Microscopicamente as principais alterações foram vacuolização dos neurônios de Purkinje do cerebelo, vacuolização das células acinares do pâncreas e das células foliculares da tireoide. No segundo artigo, o cervídeo desenvolveu uma síndrome neurológica caracterizada por fraqueza muscular, tremores de intensão, déficit visual, quedas, postura e comportamento anormal. Os principais achados microscópicos foram vacuolização citoplasmática nos neurônios de Purkinje do cerebelo. No terceiro artigo duas cabras prenhes foram intoxicadas experimentalmente com Sida carpinifolia nas doses de 10 e 13 g/kg respectivamente durante 30 dias e foram acompanhados durante 15 dias após o consumo da planta. Após este período foram eutanasiadas e necropsiadas. Adicionalmente foi incluído um feto bovino no qual a mãe havia sido intoxicada naturalmente por S. carpinifolia. As principais alterações microscópicas observadas nos fetos foram vacuolização do epitélio dos túbulos renais, das células foliculares da tireoide e cerebelo com discreta vacuolização dos neurônios de Purkinje. Na microscopia eletrônica de todos os casos foi observado vacúolos contendo material finamente granulado e delimitado por membrana. Na lectinahistoquímica dos bovinos, do cervídeo e dos fetos observou-se marcação em neurônios com as lectinas Concanavalia ensiformis (Con-A), Triticum vulgaris (WGA) e Succinyl WGA (sWGA). / Describes the epidemiological, clinical, pathological, ultrastructural and lectinhistochemical herbivore naturally poisoned by Sida carpinifolia in Rio Grande do Sul, Brazil. This study included the preparation of three articles. We conducted a retrospective study of natural poisoning by Sida carpinifolia in cattle in Rio Grande do Sul and the other reports for the first time a natural poisoning by this plant in a wild animal. The third article reports the pathologic findings observed in fetuses of female goats and cattle that were naturally and experimentally poisoned by Sida carpinifolia respectively. In the first paper were affected five cattle between the years 2001 to 2008. The clinical picture was characterized by weight loss, incoordination, difficulty walking, generalized tremors, frequent falls and death. Microscopically the main changes were vacuolation of the Purkinje neurons of cerebellum, vacuolization of acinar cells of the pancreas and thyroid follicular cells. In the second paper, the deer developed a neurological syndrome characterized by muscular weakness, intention tremors, visual and standing-up deficits, falls, and abnormal behavior and posture. The main microscopic findings were vacuolation in Purkinje neurons of cerebellum. In the third paper were two pregnant goats experimentally poisoned with Sida carpinifolia in doses of 10 and 13 g / kg for 30 days and were followed for 15 days after consumption of the plant. Additionally included a bovine fetus where the mother had been poisoned by S. carpinifolia. The main microscopic changes observed in the fetuses were vacuolation of the epithelium of renal tubules, thyroid follicular cells in the cerebellum and mild vacuolation of Purkinje neurons. On electron microscopy all cases was observed vacuoles containing finely granular material and bordered by membrane. In lectin-histochemistry of cattle, the deer and fetuses was observed in neurons marking to lectins Concanavalia ensiformis (Con-A), Triticum vulgaris (WGA) e Succinyl WGA (sWGA).

Page generated in 0.078 seconds