• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional characterisation of a novel osteoclast-derived factor

Davey, Tamara January 2008 (has links)
[Truncated abstract] Intracellular communication between osteoclasts and osteoblasts is imperative to maintain bone integrity. A myriad of molecules are responsible for regulating osteoblast and osteoclast activity. In particular, it is well documented that osteoblast-derived factors are crucial in directly controlling osteoclast formation and function. Since bone formation is coupled to bone resorption, it would be expected that osteoclasts also have some role in regulating the growth and function of osteoblast cells. However, despite extensive research upon osteoclast and osteoblast biology, the mechanisms by which osteoclasts regulate osteoblast growth and function is not well understood. In an attempt to further elucidate the mechanisms by which osteoclasts and osteoblasts communicate, the technique of subtractive hybridisation was used to identify a novel osteoclastderived factor identical to that of mouse Seminal Vesicle Secretion VII (SVS VII). Previous characterisation of the gene in bone demonstrated that SVS VII was abundantly and specifically expressed by mature osteoclasts (Phan, 2004). Additional research hinted that SVS VII acted as a novel osteoclast-derived factor, that by paracrine mechanisms, targeted osteoblast function (Phan, 2004). However, it remained open as to whether the SVS VII molecule did uniquely target the osteoblast, and whether this interaction influenced bone formation in vivo. Therefore, this thesis endeavoured to functionally characterise the role of the SVS VII molecule in the bone environment. ... Further work is needed to identigy a clear consensus binding sequence, to determine the specificity of the interaction between SVS VII protein and each phage clone, and to isolate a specific binding partner for SVS VII. In conclusion, the studies of this thesis sought to characterise the significance of SVS VII expression by mature osteoclasts, relative to its effects on osteoblast behaviour, but failed to conclusively determine a role for SVS VII in bone. Given that the effects of SVS VII on in vitro osteoblast activity and function are minimal, it is doubtful that SVS VII primarily acts as a paracrine factor integral to osteoblast function. Therefore, these findings conflict with those presented previously (Phan, 2004). However, it was demonstrated that SVS VII treatment was associated with in vivo effect on the skeleton, suggesting that SVS VII may target other elements of the bone microenvironment. Via mechanisms not yet understood, which possibly involves additional factors of the bone 11 extracellular matrix, SVS VII may target a subset of osteoprogenitor cells within the bone environment and act to regulate their proliferation. Therefore, SVS VII may enhance osteogenic precursor cell number at sites of bone formation which would increase the pool of cells that can differentiate down the osteoblast linage and contribute to bone formation. In this regard, SVS VII might function in a manner homologous to the Ly-6 molecule Sca-1 and act as an important factor that maintains a balance between the bone formation and resorption process. Clearly, more work focusing on alternative facets of bone biology is needed to identify whether there is a significant role for SVS VII in skeletal tissue.

Page generated in 0.1635 seconds