• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Υλοποίηση διαδικτυακού προσομοιωτή για αλγορίθμους επίλυσης προβλημάτων SAT

Χαρατσάρης, Δημήτριος 08 January 2013 (has links)
Η παρούσα διπλωµατική εργασία ασχολείται με το θέμα των Αλγορίθμων Επίλυσης Προβληµάτων SAT. Η εργασία αυτή εκπονήθηκε στα πλαίσια του Εργαστηρίου Ενσύρµατης Επικοινωνίας του Τµήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστηµίου Πατρών. Σκοπός της είναι η δημιουργία ενός Προσομοιωτή των αλγορίθμων αυτών, ο οποίος να μπορεί να προσπελαστεί από οποιονδήποτε μέσω του διαδικτύου. Αρχικά έγινε µία εισαγωγή στο αντικείμενο της Τεχνητής Νοημοσύνης και πιο συγκεκριµένα στην Προτασιακή Λογική, ενώ δόθηκε και το απαραίτητο υπόβαθρο για να κατανοηθεί το πρόβληµμα και οι τεχνικές λύσης του. Τέλος, επιλέχθηκε να γίνει η υλοποίηση του Προσωμοιωτή σε Java. / This diploma dissertation deals with SAT solvers, algorithms for the Boolean satisfiability problem. It was produced in the Wire Communications Laboratory of the Electrical and Computer Engineering Department of the University of Patras. Its aim is to create a simulator for these algorithms, accessible to anyone via the Internet. An introduction to the field of Artificial Intelligence and more specifically to Propositional Calculus was given as well as the necessary groundwork to understand the problem and its solution approaches. The simulation implementation was developed in Java
2

The Generalized Splitting method for Combinatorial Counting and Static Rare-Event Probability Estimation

Zdravko Botev Unknown Date (has links)
This thesis is divided into two parts. In the first part we describe a new Monte Carlo algorithm for the consistent and unbiased estimation of multidimensional integrals and the efficient sampling from multidimensional densities. The algorithm is inspired by the classical splitting method and can be applied to general static simulation models. We provide examples from rare-event probability estimation, counting, optimization, and sampling, demonstrating that the proposed method can outperform existing Markov chain sampling methods in terms of convergence speed and accuracy. In the second part we present a new adaptive kernel density estimator based on linear diffusion processes. The proposed estimator builds on existing ideas for adaptive smoothing by incorporating information from a pilot density estimate. In addition, we propose a new plug-in bandwidth selection method that is free from the arbitrary normal reference rules used by existing methods. We present simulation examples in which the proposed approach outperforms existing methods in terms of accuracy and reliability.
3

Neuro-inspired computing enhanced by scalable algorithms and physics of emerging nanoscale resistive devices

Parami Wijesinghe (6838184) 16 August 2019 (has links)
<p>Deep ‘Analog Artificial Neural Networks’ (AANNs) perform complex classification problems with high accuracy. However, they rely on humongous amount of power to perform the calculations, veiling the accuracy benefits. The biological brain on the other hand is significantly more powerful than such networks and consumes orders of magnitude less power, indicating some conceptual mismatch. Given that the biological neurons are locally connected, communicate using energy efficient trains of spikes, and the behavior is non-deterministic, incorporating these effects in Artificial Neural Networks (ANNs) may drive us few steps towards a more realistic neural networks. </p> <p> </p> <p>Emerging devices can offer a plethora of benefits including power efficiency, faster operation, low area in a vast array of applications. For example, memristors and Magnetic Tunnel Junctions (MTJs) are suitable for high density, non-volatile Random Access Memories when compared with CMOS implementations. In this work, we analyze the possibility of harnessing the characteristics of such emerging devices, to achieve neuro-inspired solutions to intricate problems.</p> <p> </p> <p>We propose how the inherent stochasticity of nano-scale resistive devices can be utilized to realize the functionality of spiking neurons and synapses that can be incorporated in deep stochastic Spiking Neural Networks (SNN) for image classification problems. While ANNs mainly dwell in the aforementioned classification problem solving domain, they can be adapted for a variety of other applications. One such neuro-inspired solution is the Cellular Neural Network (CNN) based Boolean satisfiability solver. Boolean satisfiability (k-SAT) is an NP-complete (k≥3) problem that constitute one of the hardest classes of constraint satisfaction problems. We provide a proof of concept hardware based analog k-SAT solver that is built using MTJs. The inherent physics of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics of an analog, CNN based, satisfiability (SAT) solver. </p> <p> </p> <p>Furthermore, in the effort of reaching human level performance in terms of accuracy, increasing the complexity and size of ANNs is crucial. Efficient algorithms for evaluating neural network performance is of significant importance to improve the scalability of networks, in addition to designing hardware accelerators. We propose a scalable approach for evaluating Liquid State Machines: a bio-inspired computing model where the inputs are sparsely connected to a randomly interlinked reservoir (or liquid). It has been shown that biological neurons are more likely to be connected to other neurons in the close proximity, and tend to be disconnected as the neurons are spatially far apart. Inspired by this, we propose a group of locally connected neuron reservoirs, or an ensemble of liquids approach, for LSMs. We analyze how the segmentation of a single large liquid to create an ensemble of multiple smaller liquids affects the latency and accuracy of an LSM. In our analysis, we quantify the ability of the proposed ensemble approach to provide an improved representation of the input using the Separation Property (SP) and Approximation Property (AP). Our results illustrate that the ensemble approach enhances class discrimination (quantified as the ratio between the SP and AP), leading to improved accuracy in speech and image recognition tasks, when compared to a single large liquid. Furthermore, we obtain performance benefits in terms of improved inference time and reduced memory requirements, due to lower number of connections and the freedom to parallelize the liquid evaluation process.</p>

Page generated in 0.0593 seconds