• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 531
  • 168
  • 91
  • 62
  • 31
  • 16
  • 12
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1197
  • 193
  • 154
  • 124
  • 103
  • 99
  • 99
  • 99
  • 89
  • 88
  • 79
  • 71
  • 69
  • 68
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Relocation of a neutron capture prompt gamma-ray analysis facility at the University of Missouri Research Reactor and measurement of boron in various materials

Lai, Chao-Jen, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 112-118). Also available on the Internet.
332

Nuclear magnetic resonance studies of field effects on single crystal SmB6

Caldwell, Tod. Moulton, William G. January 2004 (has links)
Thesis (Ph. D.)--Florida State University, 2004. / Advisor: Dr. William G. Moulton, Florida State University, College of Arts and Sciences, Dept. of Physics. Title and description from dissertation home page (viewed June 15, 2004). Includes bibliographical references.
333

Ultrasonic consolidation of continuous fiber metal matrix composite tape

Clews, Justin David. January 2009 (has links)
Thesis (M.M.S.E.)--University of Delaware, 2009. / Principal faculty advisor: John W. Gillespie, Dept. of Materials Science. Includes bibliographical references.
334

Exciton spectroscopy using non-resonant x-ray Raman scattering /

Feng, Yejun, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 107-119).
335

Chemical vapor deposition of boron carbo-nitride as a potential passivation layer for germanium surfaces

Fitzpatrick, Patrick Ryan 16 October 2012 (has links)
Motivated by the need for a Ge surface passivation layer, chemical vapor deposition of thin (< 10 nm) films of amorphous boron carbo-nitride (BCxNy) on Ge(100) surfaces were studied to assess film continuity, interface bonding, Ge oxidation prevention, and electrical passivation. BCxNy nominally 2.5-5 nm thick continuously covers Ge(100), as determined by ion scattering spectroscopy and two angle resolved x-ray photoelectron spectroscopy (ARXPS) techniques. ARXPS analysis reveals no evidence of an interfacial layer due to elemental intermixing at the BCxNy-Ge(100) interface. High resolution transmission electron microscopy images of HfO₂ / BCxNy / Ge(100) cross-sections reveal abrupt BCxNy-Ge(100) interfaces. XPS was used to track Ge oxidation of BCxNy-covered Ge(100) upon exposure to ambient, 50 °C deionized water, and a 250 °C atomic layer deposition HfO₂ process. If the BCxNy layer is continuous ([greater-than or equal to] ~ 4 nm), the underlying Ge(100) surface is not oxidized despite incorporation of O into BCxNy. Thinner films ([less than or equal to] 3.2 nm) permitted Ge(100) oxidation in each oxidizing environment studied. Ge nanowires with a 5.7 nm BCxNy coating were resistant to oxidation for at least 5 months of ambient exposure. C-V and I-V measurements were made for metal-insulator-semiconductor (MIS) structures fabricated from n-Si(100) and n-Ge(100) wafers passivated with 4.5-5 nm BCxNy. C-rich BC0.61N0.08 films studied up to this point exhibited large amounts of hysteresis and fixed negative charge, so they were abandoned in favor of N-rich BCxNy (0.09 [less than or equal to] x [less than or equal to] 0.15, 0.38 [less than or equal to] y [less than or equal to] 0.52). N-rich BCxNy grown at 275-400 °C showed that lower deposition temperatures resulted in improved electrical characteristics, including decreased hysteresis, lower VFB shift, lower leakage current, and less C-V stretch-out. The electrical improvement is attributed to decreased bulk and interfacial defects in BCxNy deposited at lower temperatures. Even for the lowest growth temperature studied (275 °C), BCxNy-passivated Ge(100) devices had considerable hysteresis and electrical characteristics worsened after a post-metallization anneal. BCxNy-passivated Si(100) devices outperformed similar Ge(100) devices, likely due to the higher interface state densities at the BCxNy-Ge(100) interface associated with the higher relative inertness of Ge(100) to thermal nitridation. / text
336

Experimental investigation of thermal transport in graphene and hexagonal boron nitride

Jo, Insun 07 November 2013 (has links)
Two-dimensional graphene, a single layer of graphite, has emerged as an excellent candidate for future electronic material due to its unique electronic structure and remarkably high carrier mobility. Even higher carrier mobility has been demonstrated in graphene devices using hexagonal boron nitride as an underlying dielectric support instead of silicon oxide. Interestingly, both graphene and boron nitride exhibit superior thermal properties, therefore may potentially offer a solution to the increasingly severe heat dissipation problem in nanoelectronics caused by increased power density. In this thesis, we focus on the investigation of the thermal properties of graphene and hexagonal boron nitride. First, scanning thermal microscopy based on a sub-micrometer thermocouple at the apex of a microfabricated tip was employed to image the temperature profiles in electrically biased graphene devices with ~ 100 nm scale spatial resolution. Non-uniform temperature distribution in the devices was observed, and the "hot spot" locations were correlated with the charge concentrations in the channel, which could be controlled by both gate and drain-source biases. Hybrid contact and lift mode scanning has enabled us to obtain the quantitative temperature profiles, which were compared with the profiles obtained from Raman-based thermometry. The temperature rise in the channel provided an important insight into the heat dissipation mechanism in Joule-heated graphene devices. Next, thermal conductivity of suspended single and few-layer graphene was measured using a micro-bridge device with built-in resistance thermometers. Polymer-assisted transfer technique was developed to suspend graphene layers on the pre-fabricated device. The room temperature thermal conductivity values of 1-7 layer graphene were measured to be lower than that of bulk graphite, and the value appeared to increase with increasing sample thickness. These observations can be explained by the impact of the phonon scattering by polymer residue remaining on the sample surfaces. Lastly, thermal conductivity of few-layer hexagonal boron nitride sample was measured by using the same device and technique used for suspended graphene. Measurements on samples with different suspended lengths but similar thickness allowed us to extract the intrinsic thermal conductivity of the samples as well as the contribution of contact thermal resistance to the overall thermal measurement. The room temperature thermal conductivity of 11 layer sample approaches the basal-plane value reported in the bulk sample. Lower thermal conductivity was measured in a 5 layer sample than an 11 layer sample, which again supports the polymer effect on the thermal transport in few-layer hexagonal boron nitride. / text
337

Adventures in main group chemistry: from molecules to materials

Findlater, Michael 29 August 2008 (has links)
Three synthetic methods have been explored for the preparation of several novel boron-substituted amidinates and guanidinates. The extension of heterocumulene insertion chemistries to boron-aryl, boron-metallocene and boron-transition metal moieties has also been achieved and the mechanism of such insertions is addressed via density functional theory modeling techniques. The reactivity of these complexes is also explored, mainly through halide abstraction methodologies to generate boron cations, which are potent Lewis Acids and may be useful in promoting organic transformations or in the polymerization of ethylene. The synthesis and characterization of the elusive monomeric low valent carbenoid boron(I), a compound with a formal lone pair located upon the boron center, has been lacking. The suitability of the guanidinate ligand system to support such a species is also discussed and a combined experimental and theoretical approach to this highly topical problem is also presented. Thirdly, the use of photovoltaics (devices which convert solar energy directly into electricity) as an alternative source of energy outwith fossil fuel technologies is a rapidly growing area of interest. Initial efforts to use a novel approach, which incorporates inorganic nanocrystals wired into a conducting polymer matrix, are also presented. Successful synthetic approaches to the gallium, aluminum and indium monomeric precursors suitable for electropolymerization were developed. These compounds proved to be effective starting points for the generation of conducting polymers with embedded III/VI (Ga₂S₃) nanocrystals with further studies currently underway as to their III/V (InP, GaAs) compatriots. Finally, a retrospective of projects that may best be described in terms of the moniker "Loose Ends and Future Directions" will be presented. The aim of which will be to serve as a useful guidepost for further studies in the fields and topics discussed. / text
338

Redox behavior of lanthanide and main group complexes supported by a "clamshell" 1,2-bis(imino)acenaphthene (BIAN) ligand

Gehman, Lauren Michelle 17 December 2010 (has links)
The reactions of the "clamshell" 1,2-bis(imino)acenaphthene (BIAN) ligand with decamethyleuropocene, boron triiodide, phosphorus triiodide, and tellurium tetraiodide have been investigated. The "clamshell" ligand undergoes one-electron reduction with decamethyleuropocene while treatment of this ligand with boron triiodide generates a BIAN-supported boron monoiodide via two-electron reduction. The reaction of the "clamshell" ligand with phosphorus triiodide involves a two-electron reduction of the BIAN backbone while that with tellurium tetraiodide yields a TeI2 complex without intermolecular charge transfer. / text
339

IDENTIFICATION OF INTERMEDIATE PHASES FORMED BY DIFFUSION IN THE BORON - NICKEL SYSTEM

Giancola, John Robert January 1968 (has links)
No description available.
340

STRUCTURAL ANALYSIS AND SYNTHETIC PROGRESS TOWARDS SMALL MOLECULES AS MODULATORS OF ANGIOGENESIS AT THE CELLULAR AND TRANSCRIPTIONAL LEVELS

Polaske, Nathan Walter January 2008 (has links)
Progress towards the design and the application of small molecules as inhibitors of angiogenesis is reported. First, the regulation of hypoxia inducible transcription with epipolythiodioxopiperazine (ETP) natural products is discussed, beginning with the exploration of the physical and chemical properties of ETP skeletal analogs, xylylene-linked bis-diketopiperazines (1,4-piperazine-2,5-diones, DKPs).The design, synthesis and solid-state structures of a new class of xylylene-linked bis(1,4-piperazine-2,5-diones) are reported in an effort to extend the molecular framework of piperazine-2,5-diones. These compounds were derived from piperazine-2,5-dione as the core structure, synthesized via a new efficient route, and their crystal structures were determined. We examined the effects of side chain substitution on conformations of the linked bis-DKPs in the solid state. The results suggested that the interplay between the attractive intermolecular interactions and repulsive steric interactions of the substituents at the C6 and C6' positions of the diketopiperazine rings is important in determining the solid-state conformations of xylylene-linked bis(piperazine-2,5-diones).Asymmetric alpha-sulfenylation reactions were designed and performed as a potential route to the synthesis of epipolythiodioxopiperazine natural products. First, a chiral auxiliary approach is reported, sulfenylating chiral azomethines of alpha-amino acids as epipolythiodiketopiperazine precursors in yields of 55% with de as high as 74%. Asymmetric organocatalytic alpha-sulfenylation of substituted piperazine-2,5-diones is also reported, with chiral cinchona alkaloids as bases and benzyl-substituted electrophilic sulfur transfer reagents. The reaction was investigated with varied catalyst loading, type of sulfenylating agent, temperature and solvent. The effects of ring substitution and type of catalyst on yield and enantioselectivity of the reaction are reported. The synthetic utility of the asymmetric alpha-sulfenylation in context of the synthesis of epipolythiodioxopiperazine fungal metabolites is discussed.Finally, chemical approach towards the inhibition of angiogenesis by targeting alpha v beta 3 integrin antagonists with synthetic multifunctional boron neutron capture therapy (BNCT) integrin ligands is presented. The novel synthesis of an alpha v beta 3 integrin antagonist containing a free amine group for peripheral modification is reported, along with the preparation of a bifunctional BNCT integrin ligand and a trifunctional BNCT integrin ligand containing a fluorescent dye. Synthetic challenges and potential therapeutic applications of these ligands are discussed.

Page generated in 0.0268 seconds