• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solutions of Eshelby-Type Inclusion Problems and a Related Homogenization Method Based on a Simplified Strain Gradient Elasticity Theory

Ma, Hemei 2010 May 1900 (has links)
Eshelby-type inclusion problems of an infinite or a finite homogeneous isotropic elastic body containing an arbitrary-shape inclusion prescribed with an eigenstrain and an eigenstrain gradient are analytically solved. The solutions are based on a simplified strain gradient elasticity theory (SSGET) that includes one material length scale parameter in addition to two classical elastic constants. For the infinite-domain inclusion problem, the Eshelby tensor is derived in a general form by using the Green’s function in the SSGET. This Eshelby tensor captures the inclusion size effect and recovers the classical Eshelby tensor when the strain gradient effect is ignored. By applying the general form, the explicit expressions of the Eshelby tensor for the special cases of a spherical inclusion, a cylindrical inclusion of infinite length and an ellipsoidal inclusion are obtained. Also, the volume average of the new Eshelby tensor over the inclusion in each case is analytically derived. It is quantitatively shown that the new Eshelby tensor and its average can explain the inclusion size effect, unlike its counterpart based on classical elasticity. To solve the finite-domain inclusion problem, an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET are proposed and utilized. The solution for the disturbed displacement field incorporates the boundary effect and recovers that for the infinite-domain inclusion problem. The problem of a spherical inclusion embedded concentrically in a finite spherical body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. It is demonstrated through numerical results that the newly obtained Eshelby tensor can capture the inclusion size and boundary effects, unlike existing ones. Finally, a homogenization method is developed to predict the effective elastic properties of a heterogeneous material using the SSGET. An effective elastic stiffness tensor is analytically derived for the heterogeneous material by applying the Mori-Tanaka and Eshelby’s equivalent inclusion methods. This tensor depends on the inhomogeneity size, unlike what is predicted by existing homogenization methods based on classical elasticity. Numerical results for a two-phase composite reveal that the composite becomes stiffer when the inhomogeneities get smaller.
2

Development and application of a 3D equation-of-state compositional fluid-flow simulator in cylindrical coordinates for near-wellbore phenomena

Abdollah Pour, Roohollah 06 February 2012 (has links)
Well logs and formation testers are routinely used for detection and quantification of hydrocarbon reserves. Overbalanced drilling causes invasion of mud filtrate into permeable rocks, hence radial displacement of in-situ saturating fluids away from the wellbore. The spatial distribution of fluids in the near-wellbore region remains affected by a multitude of petrophysical and fluid factors originating from the process of mud-filtrate invasion. Consequently, depending on the type of drilling mud (e.g. water- and oil-base muds) and the influence of mud filtrate, well logs and formation-tester measurements are sensitive to a combination of in-situ (original) fluids and mud filtrate in addition to petrophysical properties of the invaded formations. This behavior can often impair the reliable assessment of hydrocarbon saturation and formation storage/mobility. The effect of mud-filtrate invasion on well logs and formation-tester measurements acquired in vertical wells has been extensively documented in the past. Much work is still needed to understand and quantify the influence of mud-filtrate invasion on well logs acquired in horizontal and deviated wells, where the spatial distribution of fluids in the near-wellbore region is not axial-symmetric in general, and can be appreciably affected by gravity segregation, permeability anisotropy, capillary pressure, and flow barriers. This dissertation develops a general algorithm to simulate the process of mud-filtrate invasion in vertical and deviated wells for drilling conditions that involve water- and oil-base mud. The algorithm is formulated in cylindrical coordinates to take advantage of the geometrical embedding imposed by the wellbore in the spatial distribution of fluids within invaded formations. In addition, the algorithm reproduces the formation of mudcake due to invasion in permeable formations and allows the simulation of pressure and fractional flow-rate measurements acquired with dual-packer and point-probe formation testers after the onset of invasion. An equation-of-state (EOS) formulation is invoked to simulate invasion with both water- and oil-base muds into rock formations saturated with water, oil, gas, or stable combinations of the three fluids. The algorithm also allows the simulation of physical dispersion, fluid miscibility, and wettability alteration. Discretized fluid flow equations are solved with an implicit pressure and explicit concentration (IMPEC) scheme. Thermodynamic equilibrium and mass balance, together with volume constraint equations govern the time-space evolution of molar and fluid-phase concentrations. Calculations of pressure-volume-temperature (PVT) properties of the hydrocarbon phase are performed with Peng-Robinson's equation of state. A full-tensor permeability formulation is implemented with mass balance equations to accurately model fluid flow behavior in horizontal and deviated wells. The simulator is rigorously and successfully verified with both analytical solutions and commercial simulators. Numerical simulations performed over a wide range of fluid and petrophysical conditions confirm the strong influence that well deviation angle can have on the spatial distribution of fluid saturation resulting from invasion, especially in the vicinity of flow barriers. Analysis on the effect of physical dispersion on the radial distribution of salt concentration shows that electrical resistivity logs could be greatly affected by salt dispersivity when the invading fluid has lower salinity than in-situ water. The effect of emulsifiers and oil-wetting agents present in oil-base mud was studied to quantify wettability alteration and changes in residual water saturation. It was found that wettability alteration releases a fraction of otherwise irreducible water during invasion and this causes electrical resistivity logs to exhibit an abnormal trend from shallow- to deep-sensing apparent resistivity. Simulation of formation-tester measurements acquired in deviated wells indicates that (i) invasion increases the pressure drop during both drawdown and buildup regimes, (ii) bed-boundary effects increase as the wellbore deviation angle increases, and (iii) a probe facing upward around the perimeter of the wellbore achieves the fastest fluid clean-up when the density of invading fluid is larger than that of in-situ fluid. / text
3

Méthode non-paramétrique des noyaux associés mixtes et applications / Non parametric method of mixed associated kernels and applications

Libengue Dobele-kpoka, Francial Giscard Baudin 13 June 2013 (has links)
Nous présentons dans cette thèse, l'approche non-paramétrique par noyaux associés mixtes, pour les densités àsupports partiellement continus et discrets. Nous commençons par rappeler d'abord les notions essentielles d'estimationpar noyaux continus (classiques) et noyaux associés discrets. Nous donnons la définition et les caractéristiques desestimateurs à noyaux continus (classiques) puis discrets. Nous rappelons aussi les différentes techniques de choix deparamètres de lissage et nous revisitons les problèmes de supports ainsi qu'une résolution des effets de bord dans le casdiscret. Ensuite, nous détaillons la nouvelle méthode d'estimation de densités par les noyaux associés continus, lesquelsenglobent les noyaux continus (classiques). Nous définissons les noyaux associés continus et nous proposons laméthode mode-dispersion pour leur construction puis nous illustrons ceci sur les noyaux associés non-classiques de lalittérature à savoir bêta et sa version étendue, gamma et son inverse, gaussien inverse et sa réciproque le noyau dePareto ainsi que le noyau lognormal. Nous examinons par la suite les propriétés des estimateurs qui en sont issus plusprécisément le biais, la variance et les erreurs quadratiques moyennes ponctuelles et intégrées. Puis, nous proposons unalgorithme de réduction de biais que nous illustrons sur ces mêmes noyaux associés non-classiques. Des études parsimulations sont faites sur trois types d’estimateurs à noyaux lognormaux. Par ailleurs, nous étudions lescomportements asymptotiques des estimateurs de densité à noyaux associés continus. Nous montrons d'abord lesconsistances faibles et fortes ainsi que la normalité asymptotique ponctuelle. Ensuite nous présentons les résultats desconsistances faibles et fortes globales en utilisant les normes uniformes et L1. Nous illustrons ceci sur trois typesd’estimateurs à noyaux lognormaux. Par la suite, nous étudions les propriétés minimax des estimateurs à noyauxassociés continus. Nous décrivons d'abord le modèle puis nous donnons les hypothèses techniques avec lesquelles noustravaillons. Nous présentons ensuite nos résultats minimax tout en les appliquant sur les noyaux associés non-classiquesbêta, gamma et lognormal. Enfin, nous combinons les noyaux associés continus et discrets pour définir les noyauxassociés mixtes. De là, les outils d'unification d'analyses discrètes et continues sont utilisés, pour montrer les différentespropriétés des estimateurs à noyaux associés mixtes. Une application sur un modèle de mélange des lois normales et dePoisson tronquées est aussi donnée. Tout au long de ce travail, nous choisissons le paramètre de lissage uniquementavec la méthode de validation croisée par les moindres carrés. / We present in this thesis, the non-parametric approach using mixed associated kernels for densities withsupports being partially continuous and discrete. We first start by recalling the essential concepts of classical continuousand discrete kernel density estimators. We give the definition and characteristics of these estimators. We also recall thevarious technical for the choice of smoothing parameters and we revisit the problems of supports as well as a resolutionof the edge effects in the discrete case. Then, we describe a new method of continuous associated kernels for estimatingdensity with bounded support, which includes the classical continuous kernel method. We define the continuousassociated kernels and we propose the mode-dispersion for their construction. Moreover, we illustrate this on the nonclassicalassociated kernels of literature namely, beta and its extended version, gamma and its inverse, inverse Gaussianand its reciprocal, the Pareto kernel and the kernel lognormal. We subsequently examine the properties of the estimatorswhich are derived, specifically, the bias, variance and the pointwise and integrated mean squared errors. Then, wepropose an algorithm for reducing bias that we illustrate on these non-classical associated kernels. Some simulationsstudies are performed on three types of estimators lognormal kernels. Also, we study the asymptotic behavior of thecontinuous associated kernel estimators for density. We first show the pointwise weak and strong consistencies as wellas the asymptotic normality. Then, we present the results of the global weak and strong consistencies using uniform andL1norms. We illustrate this on three types of lognormal kernels estimators. Subsequently, we study the minimaxproperties of the continuous associated kernel estimators. We first describe the model and we give the technicalassumptions with which we work. Then we present our results that we apply on some non-classical associated kernelsmore precisely beta, gamma and lognormal kernel estimators. Finally, we combine continuous and discrete associatedkernels for defining the mixed associated kernels. Using the tools of the unification of discrete and continuous analysis,we show the different properties of the mixed associated kernel estimators. All through this work, we choose thesmoothing parameter using the least squares cross-validation method.

Page generated in 0.0502 seconds