• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solutions of Eshelby-Type Inclusion Problems and a Related Homogenization Method Based on a Simplified Strain Gradient Elasticity Theory

Ma, Hemei 2010 May 1900 (has links)
Eshelby-type inclusion problems of an infinite or a finite homogeneous isotropic elastic body containing an arbitrary-shape inclusion prescribed with an eigenstrain and an eigenstrain gradient are analytically solved. The solutions are based on a simplified strain gradient elasticity theory (SSGET) that includes one material length scale parameter in addition to two classical elastic constants. For the infinite-domain inclusion problem, the Eshelby tensor is derived in a general form by using the Green’s function in the SSGET. This Eshelby tensor captures the inclusion size effect and recovers the classical Eshelby tensor when the strain gradient effect is ignored. By applying the general form, the explicit expressions of the Eshelby tensor for the special cases of a spherical inclusion, a cylindrical inclusion of infinite length and an ellipsoidal inclusion are obtained. Also, the volume average of the new Eshelby tensor over the inclusion in each case is analytically derived. It is quantitatively shown that the new Eshelby tensor and its average can explain the inclusion size effect, unlike its counterpart based on classical elasticity. To solve the finite-domain inclusion problem, an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET are proposed and utilized. The solution for the disturbed displacement field incorporates the boundary effect and recovers that for the infinite-domain inclusion problem. The problem of a spherical inclusion embedded concentrically in a finite spherical body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. It is demonstrated through numerical results that the newly obtained Eshelby tensor can capture the inclusion size and boundary effects, unlike existing ones. Finally, a homogenization method is developed to predict the effective elastic properties of a heterogeneous material using the SSGET. An effective elastic stiffness tensor is analytically derived for the heterogeneous material by applying the Mori-Tanaka and Eshelby’s equivalent inclusion methods. This tensor depends on the inhomogeneity size, unlike what is predicted by existing homogenization methods based on classical elasticity. Numerical results for a two-phase composite reveal that the composite becomes stiffer when the inhomogeneities get smaller.
2

New Solutions of Half-Space Contact Problems Using Potential Theory, Surface Elasticity and Strain Gradient Elasticity

Zhou, Songsheng 2011 December 1900 (has links)
Size-dependent material responses observed at fine length scales are receiving growing attention due to the need in the modeling of very small sized mechanical structures. The conventional continuum theories do not suffice for accurate descriptions of the exact material behaviors in the fine-scale regime due to the lack of inherent material lengths. A number of new theories/models have been propounded so far to interpret such novel phenomena. In this dissertation a few enriched-continuum theories - the adhesive contact mechanics, surface elasticity and strain gradient elasticity - are employed to study the mechanical behaviors of a semi-infinite solid induced by the boundary forces. A unified treatment of axisymmetric adhesive contact problems is developed using the harmonic functions. The generalized solution applies to the adhesive contact problems involving an axisymmetric rigid punch of arbitrary shape and an adhesive interaction force distribution of any profile, and it links existing solutions/models for axisymmetric non-adhesive and adhesive contact problems like the Hertz solution, Sneddon's solution, the JKR model, the DMT model and the M-D model. The generalized Boussinesq and Flamant problems are examined in the context of the surface elasticity of Gurtin and Murdoch (1975, 1978), which treats the surface as a negligibly thin membrane with material properties differing from those of the bulk. Analytical solution is derived based on integral transforms and use of potential functions. The newly derived solution applies to the problems of an elastic half-space (half-plane as well) subjected to prescribed surface tractions with consideration of surface effects. The newly derived results exhibit substantial deviations from the classical predictions near the loading points and converge to the classical ones at a distance far away from those points. The size-dependency of material responses is clearly demonstrated and material hardening effects are predicted. The half-space contact problems are also studied using the simplified strain gradient elasticity theory which incorporates material microstructural effects. The solution is obtained by taking advantage of the displacement functions of Mindlin (1964) and integral transforms. Significant discrepancy between the current and the classical solutions is seen to exist in the immediate vicinity of the loading area. The discontinuity and singularity exist in classical solution are removed, and the stress and displacement components change smoothly through the solid body.

Page generated in 0.1237 seconds