• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 240
  • 36
  • 20
  • 18
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 2
  • 1
  • Tagged with
  • 376
  • 376
  • 376
  • 106
  • 84
  • 71
  • 60
  • 56
  • 47
  • 44
  • 30
  • 29
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Conormal symbols of mixed elliptic problems with singular interfaces

Harutjunjan, G., Schulze, Bert-Wolfgang January 2005 (has links)
Mixed elliptic problems are characterised by conditions that have a discontinuity on an interface of the boundary of codimension 1. The case of a smooth interface is treated in [3]; the investigation there refers to additional interface conditions and parametrices in standard Sobolev spaces. The present paper studies a necessary structure for the case of interfaces with conical singularities, namely, corner conormal symbols of such operators. These may be interpreted as families of mixed elliptic problems on a manifold with smooth interface. We mainly focus on second order operators and additional interface conditions that are holomorphic in an extra parameter. In particular, for the case of the Zaremba problem we explicitly obtain the number of potential conditions in this context. The inverses of conormal symbols are meromorphic families of pseudo-differential mixed problems referring to a smooth interface. Pointwise they can be computed along the lines [3].
272

Boundary value problems in weighted edge spaces

Harutyunyan, G., Schulze, Bert-Wolfgang January 2006 (has links)
We study elliptic boundary value problems in a wedge with additional edge conditions of trace and potential type. We compute the (difference of the) number of such conditions in terms of the Fredholm index of the principal edge symbol. The task will be reduced to the case of special opening angles, together with a homotopy argument.
273

The iterative structure of corner operators

Schulze, Bert-Wolfgang January 2008 (has links)
We give a brief survey on some new developments on elliptic operators on manifolds with polyhedral singularities. The material essentially corresponds to a talk given by the author during the Conference “Elliptic and Hyperbolic Equations on Singular Spaces”, October 27 - 31, 2008, at the MSRI, University of Berkeley.
274

On Half-Space and Shock-Wave Problems for Discrete Velocity Models of the Boltzmann Equation

Bernhoff, Niclas January 2005 (has links)
We study some questions related to general discrete velocity (with arbitrarily number of velocities) models (DVMs) of the Boltzmann equation. In the case of plane stationary problems the typical DVM reduces to a dynamical system (system of ODEs). Properties of such systems are studied in the most general case. In particular, a topological classification of their singular points is made and dimensions of the corresponding stable, unstable and center manifolds are computed. These results are applied to typical half-space problems of rarefied gas dynamics, including the problems of Milne and Kramer. A classification of well-posed half-space problems for linearized DVMs is made. Exact solutions of a (simplified) linearized kinetic model of BGK type are found as a limiting case of the corresponding discrete models. Existence of solutions of weakly non-linear half-space problems for general DVMs are studied. The solutions are assumed to tend to an assigned Maxwellian at infinity, and the data for the outgoing particles at the boundary are assigned, possibly depending on the data for the incoming particles. The conditions, on the data at the boundary, needed for the existence of a unique (in a neighborhood of the assigned Maxwellian) solution of the problem are investigated. Both implicit, in the non-degenerate cases, and sometimes, in both degenerate and non-degenerate cases, explicit conditions are found. Shock-waves can be seen as heteroclinic orbits connecting two singular points (Maxwellians) for DVMs. We give a constructive proof for the existence of solutions of the shock-wave problem for the general DVM. This is worked out for shock speeds close to a typical speed, corresponding to the sound speed in the continuous case. We clarify how close the shock speed must be for our theorem to hold, and present an iteration scheme for obtaining the solution. The main results of the paper can be used for DVMs for mixtures as well as for DVMs for one species.
275

The method of Fischer-Riesz equations for elliptic boundary value problems

Alsaedy, Ammar, Tarkhanov, Nikolai January 2012 (has links)
We develop the method of Fischer-Riesz equations for general boundary value problems elliptic in the sense of Douglis-Nirenberg. To this end we reduce them to a boundary problem for a (possibly overdetermined) first order system whose classical symbol has a left inverse. For such a problem there is a uniquely determined boundary value problem which is adjoint to the given one with respect to the Green formula. On using a well elaborated theory of approximation by solutions of the adjoint problem, we find the Cauchy data of solutions of our problem.
276

A problem-solving environment for the numerical solution of boundary value problems

Boisvert, Jason J. 19 January 2011
Boundary value problems (BVPs) are systems of ordinary differential equations (ODEs) with boundary conditions imposed at two or more distinct points. Such problems arise within mathematical models in a wide variety of applications. Numerically solving BVPs for ODEs generally requires the use of a series of complex numerical algorithms. Fortunately, when users are required to solve a BVP, they have a variety of BVP software packages from which to choose. However, all BVP software packages currently available implement a specific set of numerical algorithms and therefore function quite differently from each other. Users must often try multiple software packages on a BVP to find the one that solves their problem most effectively. This creates two problems for users. First, they must learn how to specify the BVP for each software package. Second, because each package solves a BVP with specific numerical algorithms, it becomes difficult to determine why one BVP package outperforms another. With that in mind, this thesis offers two contributions. <p> First, this thesis describes the development of the BVP component to the fully featured problem-solving environment (PSE) for the numerical solution of ODEs called pythODE. This software allows users to select between multiple numerical algorithms to solve BVPs. As a consequence, they are able to determine the numerical algorithms that are effective at each step of the solution process. Users are also able to easily add new numerical algorithms to the PSE. The effect of adding a new algorithm can be measured by making use of an automated test suite. <p> Second, the BVP component of pythODE is used to perform two research studies. In the first study, four known global-error estimation algorithms are compared in pythODE. These algorithms are based on the use of Richardson extrapolation, higher-order formulas, deferred corrections, and a conditioning constant. Through numerical experimentation, the algorithms based on higher-order formulas and deferred corrections are shown to be computationally faster than Richardson extrapolation while having similar accuracy. In the second study, pythODE is used to solve a newly developed one-dimensional model of the agglomerate in the catalyst layer of a proton exchange membrane fuel cell.
277

A problem-solving environment for the numerical solution of boundary value problems

Boisvert, Jason J. 19 January 2011 (has links)
Boundary value problems (BVPs) are systems of ordinary differential equations (ODEs) with boundary conditions imposed at two or more distinct points. Such problems arise within mathematical models in a wide variety of applications. Numerically solving BVPs for ODEs generally requires the use of a series of complex numerical algorithms. Fortunately, when users are required to solve a BVP, they have a variety of BVP software packages from which to choose. However, all BVP software packages currently available implement a specific set of numerical algorithms and therefore function quite differently from each other. Users must often try multiple software packages on a BVP to find the one that solves their problem most effectively. This creates two problems for users. First, they must learn how to specify the BVP for each software package. Second, because each package solves a BVP with specific numerical algorithms, it becomes difficult to determine why one BVP package outperforms another. With that in mind, this thesis offers two contributions. <p> First, this thesis describes the development of the BVP component to the fully featured problem-solving environment (PSE) for the numerical solution of ODEs called pythODE. This software allows users to select between multiple numerical algorithms to solve BVPs. As a consequence, they are able to determine the numerical algorithms that are effective at each step of the solution process. Users are also able to easily add new numerical algorithms to the PSE. The effect of adding a new algorithm can be measured by making use of an automated test suite. <p> Second, the BVP component of pythODE is used to perform two research studies. In the first study, four known global-error estimation algorithms are compared in pythODE. These algorithms are based on the use of Richardson extrapolation, higher-order formulas, deferred corrections, and a conditioning constant. Through numerical experimentation, the algorithms based on higher-order formulas and deferred corrections are shown to be computationally faster than Richardson extrapolation while having similar accuracy. In the second study, pythODE is used to solve a newly developed one-dimensional model of the agglomerate in the catalyst layer of a proton exchange membrane fuel cell.
278

Modified Chebyshev-Picard Iteration Methods for Solution of Initial Value and Boundary Value Problems

Bai, Xiaoli 2010 August 1900 (has links)
The solution of initial value problems (IVPs) provides the evolution of dynamic system state history for given initial conditions. Solving boundary value problems (BVPs) requires finding the system behavior where elements of the states are defined at different times. This dissertation presents a unified framework that applies modified Chebyshev-Picard iteration (MCPI) methods for solving both IVPs and BVPs. Existing methods for solving IVPs and BVPs have not been very successful in exploiting parallel computation architectures. One important reason is that most of the integration methods implemented on parallel machines are only modified versions of forward integration approaches, which are typically poorly suited for parallel computation. The proposed MCPI methods are inherently parallel algorithms. Using Chebyshev polynomials, it is straightforward to distribute the computation of force functions and polynomial coefficients to different processors. Combining Chebyshev polynomials with Picard iteration, MCPI methods iteratively refine estimates of the solutions until the iteration converges. The developed vector-matrix form makes MCPI methods computationally efficient. The power of MCPI methods for solving IVPs is illustrated through a small perturbation from the sinusoid motion problem and satellite motion propagation problems. Compared with a Runge-Kutta 4-5 forward integration method implemented in MATLAB, MCPI methods generate solutions with better accuracy as well as orders of magnitude speedups, prior to parallel implementation. Modifying the algorithm to do double integration for second order systems, and using orthogonal polynomials to approximate position states lead to additional speedups. Finally, introducing perturbation motions relative to a reference motion results in further speedups. The advantages of using MCPI methods to solve BVPs are demonstrated by addressing the classical Lambert’s problem and an optimal trajectory design problem. MCPI methods generate solutions that satisfy both dynamic equation constraints and boundary conditions with high accuracy. Although the convergence of MCPI methods in solving BVPs is not guaranteed, using the proposed nonlinear transformations, linearization approach, or correction control methods enlarge the convergence domain. Parallel realization of MCPI methods is implemented using a graphics card that provides a parallel computation architecture. The benefit from the parallel implementation is demonstrated using several example problems. Larger speedups are achieved when either force functions become more complicated or higher order polynomials are used to approximate the solutions.
279

Heat transfer between two arbitrary shaped bodies in the jump regime with one body enclosed inside the other : a numerical study /

Hashim, Sithy Aysha Fazlie, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 95-97). Also available on the Internet.
280

Heat transfer between two arbitrary shaped bodies in the jump regime with one body enclosed inside the other a numerical study /

Hashim, Sithy Aysha Fazlie, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 95-97). Also available on the Internet.

Page generated in 0.0794 seconds