Spelling suggestions: "subject:"boundary value problems."" "subject:"foundary value problems.""
261 |
On general boundary value problems for elliptic equationsSchulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
We construct a theory of general boundary value problems for differential operators whose symbols do not necessarily satisfy the Atiyah-Bott condition [3] of vanishing of the corresponding obstruction. A condition for these problems to be Fredholm is introduced and the corresponding finiteness theorems
are proved.
|
262 |
Spectral boundary value problems and elliptic equations on singular manifoldsSchulze, Bert-Wolfgang, Nazaikinskii, Vladimir, Sternin, Boris, Shatalov, Victor January 1997 (has links)
For elliptic operators on manifolds with boundary, we define spectral boundary value problems, which generalize the Atiyah-Patodi-Singer problem to the case of nonhomogeneous boundary conditions, operators of arbitrary order, and nonself-adjoint conormal symbols. The Fredholm property is proved and equivalence with certain elliptic equations on manifolds with conical singularities is established.
|
263 |
On the invariant index formulas for spectral boundary value problemsSavin, Anton, Schulze, Bert-Wolfgang, Sternin, Boris January 1998 (has links)
In the paper we study the possibility to represent the index formula for spectral boundary value problems as a sum of two terms, the first one being homotopy invariant of the principal symbol, while the second depends on the conormal symbol of the problem only. The answer is given in analytical, as well as in topological terms.
|
264 |
Elliptic operators in even subspacesSavin, Anton, Sternin, Boris January 1999 (has links)
An elliptic theory is constructed for operators acting in subspaces defined via even pseudodifferential projections. Index formulas are obtained for operators on compact manifolds without boundary and for general boundary value problems.
A connection with Gilkey's theory of η-invariants is established.
|
265 |
Elliptic operators in odd subspacesSavin, Anton, Sternin, Boris January 1999 (has links)
An elliptic theory is constructed for operators acting in subspaces defined via even pseudodifferential projections. Index formulas are obtained for operators on compact manifolds without boundary and for general boundary value problems.
A connection with Gilkey's theory of η-invariants is established.
|
266 |
Surgery and the relative index in elliptic theoryNazaikinskii, Vladimir E., Sternin, Boris Yu. January 1999 (has links)
We prove a general theorem on the local property of the relative index for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions) this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities as well as for elliptic boundary value problems with a symmetry condition for the conormal symbol.
|
267 |
The homotopy classification and the index of boundary value problems for general elliptic operatorsSchulze, Bert-Wolfgang, Sternin, Boris, Savin, Anton January 1999 (has links)
We give the homotopy classification and compute the index of boundary value problems for elliptic equations. The classical case of operators that satisfy the Atiyah-Bott condition is studied first. We also consider the general case of boundary value problems for operators that do not necessarily satisfy the Atiyah-Bott condition.
|
268 |
Pseudo-differential crack theoryKapanadze, David, Schulze, Bert-Wolfgang January 2000 (has links)
Crack problems are regarded as elements in a pseudo-differential algbra, where the two sdes int S± of the crack S are treated as interior boundaries and the boundary Y of the crack as an edge singularity. We employ the pseudo-differential calculus of boundary value problems with the transmission property near int S± and the edge pseudo-differential calculus (in a variant with Douglis-Nirenberg orders) to construct parametrices od elliptic crack problems (with extra trace and potential conditions along Y) and to characterise asymptotics of solutions near Y (expressed in the framework of continuous asymptotics). Our operator algebra with boundary and edge symbols contains new weight and order conventions that are necessary also for the more general calculus on manifolds with boundary and edges.
|
269 |
Surgery and the relative index theorem for families of elliptic operatorsNazaikinskii, Vladimir, Schulze, Bert-Wolfgang, Sternin, Boris January 2002 (has links)
We prove a theorem describing the behaviour of the relative index of families of Fredholm operators under surgery performed on spaces where the operators act. In connection with additional conditions (like symmetry conditions) this theorem results in index formulas for given operator families. By way of an example, we give an application to index theory of families of boundary value problems.
|
270 |
The Zaremba problem with singular interfaces as a corner boundary value problemHarutjunjan, Gohar, Schulze, Bert-Wolfgang January 2004 (has links)
We study mixed boundary value problems for an elliptic operator A on a manifold X with boundary Y / i.e., Au = f in int X, T±u = g± on int Y±, where Y is subdivided into subsets Y± with an interface Z and boundary conditions T± on Y± that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume that Z ⊂ Y is a manifold with conical singularity v. As an example we consider the Zaremba problem, where A is the Laplacian and T− Dirichlet, T+ Neumann conditions. The problem is treated as a corner boundary value problem near v which is the new point and the main difficulty in this paper. Outside v the problem belongs to the edge calculus as is shown in [3].
With a mixed problem we associate Fredholm operators in weighted corner Sobolev spaces with double weights, under suitable edge conditions along Z {v} of trace and potential type. We construct parametrices within the calculus and establish the regularity of solutions.
|
Page generated in 0.0612 seconds