• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elliptic problems with high order boundary conditions

Mullikin, A. L. January 1965 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1965. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
2

On general boundary value problems for elliptic equations

Schulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
We construct a theory of general boundary value problems for differential operators whose symbols do not necessarily satisfy the Atiyah-Bott condition [3] of vanishing of the corresponding obstruction. A condition for these problems to be Fredholm is introduced and the corresponding finiteness theorems are proved.
3

The homotopy classification and the index of boundary value problems for general elliptic operators

Schulze, Bert-Wolfgang, Sternin, Boris, Savin, Anton January 1999 (has links)
We give the homotopy classification and compute the index of boundary value problems for elliptic equations. The classical case of operators that satisfy the Atiyah-Bott condition is studied first. We also consider the general case of boundary value problems for operators that do not necessarily satisfy the Atiyah-Bott condition.
4

K-Teoria e aplicações para cálculos pseudodiferenciais globais e seus problemas de fronteira / K-Theory and applications for global pseudodifferential calculus and its boundary problems.

Lopes, Pedro Tavares Paes 17 August 2012 (has links)
Nesta tese vamos apresentar dois resultados a respeito de K-teoria de álgebras C^{*} de classes de operadores pseudodiferenciais que são globalmente definidos em \\mathbb^. O primeiro resultado é a prova da regularidade da função \\eta para operadores clássicos com símbolos de Shubin. Vamos mostrar que a álgebra de operadores pseudodiferenciais em \\mathbb^ com símbolos de Shubin permite a construção de potências complexas e um tipo de traço de Kontsevich-Vishik numa forma muito similar àquela feita para variedades compactas, com definições até mais simples. Mostraremos, então, que podemos definir as funções \\zeta e \\eta também para esses símbolos. Finalmente mostraremos como o conhecimento de fatos simples sobre a sua K-teoria permitem a prova da regularidade da função \\eta. Para variedades compactas, esse resultado tem muitas implicações. Acreditamos assim que ele também possa ser interessante para os estudos de operadores globais em \\mathbb^. O segundo resultado é o cálculo da K-teoria de operadores limitados gerados por operadores de Boutet de Monvel SG de ordem (0,0) e tipo zero em \\mathbb_{+}^. Boutet de Monvel introduziu a álgebra que leva o seu nome para estudar o índice de operadores elípticos de fronteira em variedades compactas com bordo. Mais recentemente uma nova abordagem foi proposta por Melo, Nest, Schrohe e Schick para obter resultados sobre o índice de Fredholm usando a K-teoria de álgebras C^{*}, uma ferramenta que não era disponível ainda quando Boutet de Monvel desenvolveu sua álgebra. Nossa ideia foi, então, mostrar como calcular a K-teoria de álgebras de Boutet de Monvel com símbolos SG em \\mathbb_{+}^, em que os símbolos SG são uma classe de símbolos globalmente definidos em \\mathbb^. Acreditamos que isso possa ser útil também ao estudo de problemas elípticos de fronteira para operadores de Boutet de Monvel com símbolos SG em certas classes de variedades não compactas. / We are going to present two results concerning K-theory of C^{*} algebras of classes of pseudodifferential operators that are globally defined in \\mathbb^. The first result is the proof of the regularity of the \\eta function for classical operators with Shubin symbols. We are going to show that the algebra of classical pseudodifferential operators in \\mathbb^ with Shubin symbols allows the construction of complex powers and a kind of Kontsevich-Vishik trace in a very similar way as on compact manifolds, with even easier definitions. Then we show that we can define the \\zeta and \\eta functions also for these symbols. Finally we will show how the knowledge of simple facts about the K-theory of pseudodifferential operators with Shubin\'s symbols allows the proof of the regularity of the \\eta function at 0. For compact manifolds, this regularity is a result that has many implications. Therefore it may also be interesting for global operators in \\mathbb^. The second result is the evaluation of the K-theory of bounded operators generated by SG Boutet de Monvel operators of order (0,0) and type 0 in \\mathbb_^. Boutet de Monvel introduced his algebra to study the index of elliptic boundary value problems on compact manifolds. More recently a new approach was proposed by Melo, Nest, Schrohe and Schick to obtain results about the index of Fredholm operators using the K-theory of C^ algebras, a tool which was not well known when Boutet de Monvel published his work. The idea here is to show how one can evaluate the K-theory of the Boutet de Monvel operators with SG symbols in \\mathbb_^, where SG symbols is a class of symbols globally defined in \\mathbb^. We believe that this can be useful to the study of index of Fredholm problems also in the case of Boutet de Monvel operators with SG symbols in some classes of non-compact manifolds.
5

K-Teoria e aplicações para cálculos pseudodiferenciais globais e seus problemas de fronteira / K-Theory and applications for global pseudodifferential calculus and its boundary problems.

Pedro Tavares Paes Lopes 17 August 2012 (has links)
Nesta tese vamos apresentar dois resultados a respeito de K-teoria de álgebras C^{*} de classes de operadores pseudodiferenciais que são globalmente definidos em \\mathbb^. O primeiro resultado é a prova da regularidade da função \\eta para operadores clássicos com símbolos de Shubin. Vamos mostrar que a álgebra de operadores pseudodiferenciais em \\mathbb^ com símbolos de Shubin permite a construção de potências complexas e um tipo de traço de Kontsevich-Vishik numa forma muito similar àquela feita para variedades compactas, com definições até mais simples. Mostraremos, então, que podemos definir as funções \\zeta e \\eta também para esses símbolos. Finalmente mostraremos como o conhecimento de fatos simples sobre a sua K-teoria permitem a prova da regularidade da função \\eta. Para variedades compactas, esse resultado tem muitas implicações. Acreditamos assim que ele também possa ser interessante para os estudos de operadores globais em \\mathbb^. O segundo resultado é o cálculo da K-teoria de operadores limitados gerados por operadores de Boutet de Monvel SG de ordem (0,0) e tipo zero em \\mathbb_{+}^. Boutet de Monvel introduziu a álgebra que leva o seu nome para estudar o índice de operadores elípticos de fronteira em variedades compactas com bordo. Mais recentemente uma nova abordagem foi proposta por Melo, Nest, Schrohe e Schick para obter resultados sobre o índice de Fredholm usando a K-teoria de álgebras C^{*}, uma ferramenta que não era disponível ainda quando Boutet de Monvel desenvolveu sua álgebra. Nossa ideia foi, então, mostrar como calcular a K-teoria de álgebras de Boutet de Monvel com símbolos SG em \\mathbb_{+}^, em que os símbolos SG são uma classe de símbolos globalmente definidos em \\mathbb^. Acreditamos que isso possa ser útil também ao estudo de problemas elípticos de fronteira para operadores de Boutet de Monvel com símbolos SG em certas classes de variedades não compactas. / We are going to present two results concerning K-theory of C^{*} algebras of classes of pseudodifferential operators that are globally defined in \\mathbb^. The first result is the proof of the regularity of the \\eta function for classical operators with Shubin symbols. We are going to show that the algebra of classical pseudodifferential operators in \\mathbb^ with Shubin symbols allows the construction of complex powers and a kind of Kontsevich-Vishik trace in a very similar way as on compact manifolds, with even easier definitions. Then we show that we can define the \\zeta and \\eta functions also for these symbols. Finally we will show how the knowledge of simple facts about the K-theory of pseudodifferential operators with Shubin\'s symbols allows the proof of the regularity of the \\eta function at 0. For compact manifolds, this regularity is a result that has many implications. Therefore it may also be interesting for global operators in \\mathbb^. The second result is the evaluation of the K-theory of bounded operators generated by SG Boutet de Monvel operators of order (0,0) and type 0 in \\mathbb_^. Boutet de Monvel introduced his algebra to study the index of elliptic boundary value problems on compact manifolds. More recently a new approach was proposed by Melo, Nest, Schrohe and Schick to obtain results about the index of Fredholm operators using the K-theory of C^ algebras, a tool which was not well known when Boutet de Monvel published his work. The idea here is to show how one can evaluate the K-theory of the Boutet de Monvel operators with SG symbols in \\mathbb_^, where SG symbols is a class of symbols globally defined in \\mathbb^. We believe that this can be useful to the study of index of Fredholm problems also in the case of Boutet de Monvel operators with SG symbols in some classes of non-compact manifolds.
6

Anisotropic mesh refinement for singularly perturbed reaction diffusion problems

Apel, Th., Lube, G. 30 October 1998 (has links) (PDF)
The paper is concerned with the finite element resolution of layers appearing in singularly perturbed problems. A special anisotropic grid of Shishkin type is constructed for reaction diffusion problems. Estimates of the finite element error in the energy norm are derived for two methods, namely the standard Galerkin method and a stabilized Galerkin method. The estimates are uniformly valid with respect to the (small) diffusion parameter. One ingredient is a pointwise description of derivatives of the continuous solution. A numerical example supports the result. Another key ingredient for the error analysis is a refined estimate for (higher) derivatives of the interpolation error. The assumptions on admissible anisotropic finite elements are formulated in terms of geometrical conditions for triangles and tetrahedra. The application of these estimates is not restricted to the special problem considered in this paper.
7

Anisotropic mesh refinement in stabilized Galerkin methods

Apel, Thomas, Lube, Gert 30 October 1998 (has links) (PDF)
The numerical solution of the convection-diffusion-reaction problem is considered in two and three dimensions. A stabilized finite element method of Galerkin/Least squares type accomodates diffusion-dominated as well as convection- and/or reaction- dominated situations. The resolution of boundary layers occuring in the singularly perturbed case is accomplished using anisotropic mesh refinement in boundary layer regions. In this paper, the standard analysis of the stabilized Galerkin method on isotropic meshes is extended to more general meshes with boundary layer refinement. Simplicial Lagrangian elements of arbitrary order are used.
8

Anisotropic mesh refinement in stabilized Galerkin methods

Apel, Thomas, Lube, Gert 30 October 1998 (has links)
The numerical solution of the convection-diffusion-reaction problem is considered in two and three dimensions. A stabilized finite element method of Galerkin/Least squares type accomodates diffusion-dominated as well as convection- and/or reaction- dominated situations. The resolution of boundary layers occuring in the singularly perturbed case is accomplished using anisotropic mesh refinement in boundary layer regions. In this paper, the standard analysis of the stabilized Galerkin method on isotropic meshes is extended to more general meshes with boundary layer refinement. Simplicial Lagrangian elements of arbitrary order are used.
9

Anisotropic mesh refinement for singularly perturbed reaction diffusion problems

Apel, Th., Lube, G. 30 October 1998 (has links)
The paper is concerned with the finite element resolution of layers appearing in singularly perturbed problems. A special anisotropic grid of Shishkin type is constructed for reaction diffusion problems. Estimates of the finite element error in the energy norm are derived for two methods, namely the standard Galerkin method and a stabilized Galerkin method. The estimates are uniformly valid with respect to the (small) diffusion parameter. One ingredient is a pointwise description of derivatives of the continuous solution. A numerical example supports the result. Another key ingredient for the error analysis is a refined estimate for (higher) derivatives of the interpolation error. The assumptions on admissible anisotropic finite elements are formulated in terms of geometrical conditions for triangles and tetrahedra. The application of these estimates is not restricted to the special problem considered in this paper.

Page generated in 0.0835 seconds