• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Full Scale Experimental Transonic Fan Interaction with a Boundary Layer Ingesting Total Pressure Distortion

Bailey, Justin Mark 05 January 2017 (has links)
Future commercial transport aircraft will feature more aerodynamic architectures to accommodate stringent design goals for higher fuel efficiency, reduced cruise and taxi NOx emissions, and reduced noise. Airframe designs most likely to satisfy the first goal feature architectures that lead to the formation of non-uniform flow introduced to the engine through boundary layer ingesting (BLI) inlets, creating a different operational environment from which the engines were originally designed. The goal of this study was to explore the effects such non-uniform flow would have on the behavior and performance of a transonic fan in a full scale engine test environment. This dissertation presents an experimental study of the interaction between a full scale transonic fan and a total pressure distortion representative of a boundary layer ingesting serpentine inlet. A five-hole pneumatic probe was traversed directly in front of and behind a fan rotor to fully characterize the inlet and outlet fan profile. The distortion profile was also measured at the aerodynamic interface plane (AIP) with an SAE standard total pressure rake, which has historically been accepted as the inlet profile to the fan. This provided a comparison between the present work and current practice. Accurate calculation of local fan performance metrics such as blade loading, pressure rise, and efficiency were obtained. The fan inlet measurement profile greatly enhanced the understanding of the fan interaction to the flow distortion and provided a more complete explanation of the fan behavior. Secondary flowfield formation due to the accelerated flow redistribution directly upstream of the fan created localized bulk co- and counter- rotating swirl regions that were found to be correlated with localized fan performance phenomena. It was observed that the effects of the distortion on fan performance were exaggerated if the assumed fan inlet profiles were data taken only at the AIP. The reduction in fan performance with respect to undistorted inlet conditions is also explored, providing insight into how such distortions can be compared to baseline conditions. The dissertation closes with several recommendations for improving distortion tolerant fan design in the context of experimental research and development. / Ph. D. / Future commercial transport aircraft will present more aerodynamic architectures to accommodate stringent design goals for higher fuel efficiency, reduced cruise and taxi NOx emissions, and reduced noise. Airframe designs most likely to satisfy the first goal feature architectures that lead to the formation of non-uniform flow introduced to the engine through boundary layer ingesting (BLI) inlets, creating a different operational environment from which the engines were originally designed. The goal of this study was to explore the effects such non-uniform flow would have on the behavior and performance of a transonic fan in a full scale engine test environment. This dissertation presents an experimental study of the interaction between a full scale transonic fan and a total pressure distortion representative of a boundary layer ingesting serpentine inlet. A five-hole pneumatic probe was traversed directly in front of and behind a fan rotor to fully characterize the inlet and outlet fan profile. The distortion profile was also measured at the aerodynamic interface plane (AIP), which has historically been accepted as the inlet profile to the fan. This provided a comparison between the present work and current practice. Accurate calculation of local fan performance metrics were obtained. The fan inlet measurement profile greatly enhanced the understanding of the fan interaction to the flow distortion and provided a more complete explanation of the fan behavior. It was observed that the effects of the distortion on fan performance were exaggerated if the assumed fan inlet profiles were data taken only at the AIP. The reduction in fan performance with respect to undistorted inlet conditions is also explored, providing insight into how such distortions can be compared to baseline conditions. The dissertation closes with several recommendations for improving distortion tolerant fan design in the context of experimental research and development.
2

Assessment of an Innovative Experimental Facility for Testing Diffusing Serpentine Inlets with Large Amounts of Boundary Layer Ingestion

Hylton, Michael Ronnie 04 August 2008 (has links)
An innovative experimental facility was developed for testing flush-mounted, diffusing serpentine inlets intended for use on blended-wing-body aircraft. The static ground test facility was able to simulate the boundary layer profile expected to be ingested by inlets mounted on the aft sections of these aircraft. It generated Mach numbers ranging from 0.19 to 0.4 and boundary layer thicknesses between 36% and 45%. The circumferential distortions at the aerodynamic interface plane of the serpentine inlet were also calculated, and ranged between 0.0042 for the lowest Mach number, to 0.0098 for the highest Mach number. Reynolds numbers for the tests ranged between 1.2 million and 2.4 million depending on engine speed and Mach number. The results of the experiment were compared to a previous NASA report, and showed close agreement in distortion patterns and pressure losses at a Mach number of 0.25. / Master of Science

Page generated in 0.0806 seconds