Spelling suggestions: "subject:"bränsledetektering"" "subject:"händelsedetektering""
1 |
Automatic detection of the fuel composition in a Diesel Engine : Identifying fuel composition in the fuel system of a combustion engine and optimising for computational complexity / Automatisk bränsledetektering med beräkningseffektiv variabelval : Idenftifiering av bränslekomposition i en förbränningmotors bränslesystem för optimerat variabelsvalHultgren, Andree January 2021 (has links)
The transportation industry is responsible for 26% of all emission of greenhouse gases in the European Union. Many steps are being taken to minimise greenhouse gas emissions. The most effective way to reduce the emission of greenhouse gases is by transitioning to biofuels. The combustion engines in most vehicles perform below their potential efficiency when running on biofuels due to the reduced energy density. The characteristics of the injection into the combustion chamber can be adjusted if the fuel type being injected is known. In Diesel engines, Fatty Acid Methyl Esters (FAME) is one of the most used biofuels. The higher weight density and lower energy density of FAME compared to Diesel result in lower power output when used in a Diesel engine. Detecting the fuel composition in the engine would allow for adaptation to the injection characteristics and bring back the engine’s efficiency to its full potential independent of the fuel composition. The most significant issue with fuel composition prediction is that no work has been done in this field using machine learning. There are several hundreds of features inside the control system of a truck. The selection of which features contribute to the prediction of fuel composition is important and challenging. The prediction should be computationally inexpensive and relatively accurate to facilitate in-time prediction. Using a feature selection method based on Shapley additive explanations (SHAP) applied to an expert network enables feature selection perfectly tailored for finding the optimal features that combined will provide accurate predictions with minimal computational resources. This feature selection method has been tested before but with limited analysis and adaptation. We apply various feature selection methods and propose a new feature selection method coined SHAP-C, which outperforms all other feature selection methods we have tested for this particular scope of application. The results show that with a minimal network of two input features and six hidden nodes, the fuel composition can be predicted with a 98.82% accuracy using a total of 75 floating-point operations. The low computational complexity allows for real-time predictions in the control system of a truck, which can be used to modulate the injection characteristics into the engine’s combustion chamber. The network used to identify the fuel composition has been trained with data from a single truck. The results are therefore not generalised across trucks. This adjustment based on fuel composition would allow a truck to run optimally independent of the fuel composition. / Transportindustrin är ansvarig för 26% av alla utsläpp i den Europeiska Unionen. Många steg tas för att minimera utsläpp av växthusgaser. En av de mest effektiva metoderna för att minska utsläppen är biobränslen. Förbränningsmotorer i de flesta fordon underpresterar när de använder biobränslen som källa för energi. Karaktäristiken av injektionen i förbränningskammaren kan justeras om bränsletypen är känd. I dieselmotorer är fettsyrametylestrar en av de mest använda biobränslena. Den högre densiteten i vikt och den lägre densiteten i energi resulterar i en låg effekt när biobränslet används i en dieselmotor. Detektering av bränslekomposition i bränslesystemet skulle möjliggöra en adaptiv injektion av bränsle för att optimera effektiviteten av motorn. Det största problemet med bränsledetektering är att inget arbete har gjorts inom maskininlärning i detta område. Det finns hundratals olika mätvärden inuti kontrollsystemet av en lastbil. Valet av vilket mätvärde som bidrar till en träffsäker beräkning av bränslekomposition är mycket viktigt. Beräkningen måste vara beräkningsmässigt billig, snabb och träffsäker. Därför måste en skräddarsydd lösning byggas för att finna de bästa mätvärden med minimal beräkningskostnad för att kunna beräkna bränsletyp i realtid. Användningen av en mätvärdesväljande metod baserad på SHAP och ett expert-nätverk tillåter ett val av mätpunkter som är perfekt anpassat för att finna vilka mätpunkter är optimala för att träffsäkert och beräkningsbilligt ta fram bränslekompositionen. Detta val av mätvärden har testats förut men klassades som opålitligt på grund av den slumpmässiga naturen av neurala nätverk. Denna brist har överkommits genom att träna ett stort antal expertnätverk och använda resultatet från genomsnittet över alla modeller, vilket eliminerar den stokastiska naturen av problemet. Resultaten visar att med hjälp av ett litet nätverk med två mätpunkter och sex dolda noder, kan bränslekompositionen beräknas med en träffsäkerhet av 98.82% med endast 75 flyttalsoperationer. Detta tillåter för realtids beräkning av bränslekomposition i kontrollsystemet till en lastbil, vilket i sin tur kan modulera injektionskaraktäristiken av bränsle till förbränningskammaren i motorn. Denna justering baserat på bränslekompositionen tillåter en lastbil att köras optimalt oavsätt komposition av bränsle.
|
Page generated in 0.0612 seconds