• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The signaling pathway mediating the proliferative action of TNF-α in C6 glioma cells.

January 2001 (has links)
by Ho Wai Fong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 207-243). / Abstracts in English and Chinese. / Title --- p.i / Abstract --- p.ii / 摘要 --- p.v / Acknowledgements --- p.viii / Table of Contents --- p.x / List of Abbreviations --- p.xviii / List of Figures --- p.xxiv / List of Tables --- p.xxix / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Traumatic brain injury --- p.1 / Chapter 1.2 --- Ceils of the nervous system: glia --- p.1 / Chapter 1.2.1 --- Astroglia - / Chapter 1.2.1.1 --- Molecular markers of astroglia --- p.3 / Chapter 1.2.1.2 --- Functions of astroglia --- p.3 / Chapter 1.2.2 --- Oligodendrocyte --- p.5 / Chapter 1.2.2.1 --- Molecular markers of oligodendrocyte --- p.6 / Chapter 1.2.2.2 --- Functions of oligodendrocyte --- p.6 / Chapter 1.2.3 --- Microglia --- p.7 / Chapter 1.2.3.1 --- Molecular markers of microglia --- p.7 / Chapter 1.2.3.2 --- Functions of microglia --- p.8 / Chapter 1.3 --- Cytokine and brain injury --- p.8 / Chapter 1.4 --- Tumor necrosis factor alpha (TNF-α) --- p.9 / Chapter 1.5 --- TNF-α receptor --- p.10 / Chapter 1.6 --- Biological activities of TNF-α --- p.11 / Chapter 1.7 --- Signaling mechanism --- p.13 / Chapter 1.7.1 --- Protein kinase C --- p.13 / Chapter 1.7.2 --- Protein kinase A --- p.14 / Chapter 1.7.3 --- p38 mitogen-activated protein kinase (p38 MAPK) --- p.15 / Chapter 1.7.3.1 --- Biological activities of p38 MAPK --- p.18 / Chapter 1.7.4 --- Inducible nitric oxide synthase (iNOS) --- p.20 / Chapter 1.7.5 --- cAMP responsive element binding protein (CREB) --- p.21 / Chapter 1.7.6 --- Transcription factor c-fos --- p.23 / Chapter 1.7.7 --- Nuclear factor kappa-B (NF-kB) --- p.24 / Chapter 1.8 --- "Brain injury, astrogliosis and scar formation" --- p.26 / Chapter 1.9 --- β-adrenergic receptor (β-AR) --- p.28 / Chapter 1.9.1 --- Functions of β-AR in astrocytes --- p.29 / Chapter 1.10 --- Why do we use C6 glioma cell? --- p.31 / Chapter 1.11 --- Fluorescent differential display (FDD) --- p.34 / Chapter 1.12 --- Aims and Scopes of this project --- p.36 / Chapter Chapter 2 --- MATERIALS AND METHODS / Chapter 2.1 --- Material --- p.40 / Chapter 2.1.1 --- Cell line --- p.40 / Chapter 2.1.2 --- Cell culture reagents --- p.40 / Chapter 2.1.2.1 --- Complete Dulbecco's modified Eagle medium (CDMEM) --- p.40 / Chapter 2.1.2.2 --- Rosewell Park Memorial Institute (RPMI) medium --- p.41 / Chapter 2.1.2.3 --- Phosphate buffered saline (PBS) --- p.41 / Chapter 2.1.3 --- Recombinant cytokines --- p.41 / Chapter 2.1.4 --- Chemicals for signal transduction study --- p.42 / Chapter 2.1.4.1 --- Modulators of p38 mitogen-activated protein kinase (p38 MAPK) --- p.42 / Chapter 2.1.4.2 --- Modulators of protein kinase C (PKC) --- p.42 / Chapter 2.1.4.3 --- Modulators of protein kinase A (PKA) --- p.42 / Chapter 2.1.4.4 --- β-Adrenergic agonist and antagonist --- p.43 / Chapter 2.1.5 --- Antibodies --- p.44 / Chapter 2.1.5.1 --- Anti-p38 mitogen-activated protein kinase (p38 MAPK) antibody --- p.44 / Chapter 2.1.5.2 --- Anti-phosporylation p38 mitogen-activated protein kinase (p-p38 MAPK) antibody --- p.44 / Chapter 2.1.5.3 --- Antibody conjugates --- p.44 / Chapter 2.1.6 --- Reagents for RNA isolation --- p.45 / Chapter 2.1.7 --- Reagents for DNase I treatment --- p.45 / Chapter 2.1.8 --- Reagents for reverse transcription of mRNA and fluorescent PCR amplification --- p.45 / Chapter 2.1.9 --- Reagents for fluorescent differential display --- p.46 / Chapter 2.1.10 --- Materials for excision of differentially expressed cDNA fragments --- p.46 / Chapter 2.1.11 --- Reagents for reamplification of differentially expressed cDNA fragments --- p.46 / Chapter 2.1.12 --- Reagents for subcloning of reamplified cDNA fragments --- p.47 / Chapter 2.1.13 --- Reagents for purification of plasmid DNA from recombinant clones --- p.47 / Chapter 2.1.14 --- Reagents for DNA sequencing of differentially expressed cDNA fragments --- p.47 / Chapter 2.1.15 --- Reagents for reverse transcription-polymerase chain reaction (RT-PCR) --- p.48 / Chapter 2.1.16 --- Reagents for electrophoresis --- p.50 / Chapter 2.1.17 --- Reagents and buffers for Western blot --- p.50 / Chapter 2.1.18 --- Other chemicals and reagents --- p.50 / Chapter 2.2 --- Maintenance of rat C6 glioma cell line --- p.51 / Chapter 2.3 --- RNA isolation --- p.52 / Chapter 2.3.1 --- Measurement of RNA yield --- p.53 / Chapter 2.4 --- DNase I treatment --- p.53 / Chapter 2.5 --- Reverse transcription of mRNA and fluorescent PCR amplification --- p.54 / Chapter 2.6 --- Fluorescent differentia display --- p.55 / Chapter 2.7 --- Excision of differentially expressed cDNA fragments --- p.59 / Chapter 2.8 --- Reamplification of differentially expressed cDNA fragments --- p.59 / Chapter 2.9 --- Subcloning of reamplified cDNA fragments --- p.60 / Chapter 2.10 --- Purification of plasmid DNA from recombinant clones --- p.63 / Chapter 2.11 --- DNA sequencing of differentially expressed cDNA fragments --- p.64 / Chapter 2.12 --- Reverse transcription-polymerase chain reaction (RT-PCR) --- p.66 / Chapter 2.13 --- Western bolt analysis --- p.67 / Chapter Chapter 3 --- RESULTS / Chapter 3.1 --- DNase I treatment --- p.71 / Chapter 3.2 --- FDD RT-PCR and band excision --- p.71 / Chapter 3.3 --- Reamplification of excised cDNA fragments --- p.74 / Chapter 3.4 --- Subcloning of reamplified cDNA fragments --- p.77 / Chapter 3.5 --- DNA sequencing of subcloned cDNA fragments --- p.77 / Chapter 3.6 --- Confirmation of the differentially expressed cDNA fragments by RT-PCR and Western blotting --- p.84 / Chapter 3.6.1 --- Effects of TNF-α on p38a mitogen protein kinase (p38 α MAPK) --- p.84 / Chapter 3.6.2 --- Effects of TNF-α on p38 a MAPK and p-p38 α MAPK protein level --- p.86 / Chapter 3.7 --- Effects of TNF-α on p38 MAPK --- p.88 / Chapter 3.7.1 --- "Effects of TNF-α on p38 α, β,γ andδ MAPK" --- p.88 / Chapter 3.7.2 --- Role of TNF-receptor (TNF-R) subtype in the TNF-α-induced p3 8 MAPK expression in C6 cells --- p.89 / Chapter 3.7.3 --- The signaling system mediating TNF-α-induced p38 a MAPK expression in C6 cells --- p.92 / Chapter 3.7.3.1 --- The involvement of PKC in TNF-α-induced p38 MAPK expression in C6 cells --- p.92 / Chapter 3.7.3.2 --- The involvement of PKC in TNF-α-induced p38 MAPK expression in C6 cells --- p.98 / Chapter 3.7.4 --- The relationship between p38 MAPK and β-adrenergic mechanisms in C6 cells --- p.99 / Chapter 3.7.4.1 --- Effects of isoproterenol and propanol on p38 MAPK mRNA levels in C6 cells --- p.103 / Chapter 3.7.4.2 --- Effects of β1-agonist and -antagonist on p38 MAPK mRNA levels in C6 cells --- p.106 / Chapter 3.7.4.3 --- Effects of β2-agonist and -antagonist on p38 MAPK mRNA levels in C6 cells --- p.107 / Chapter 3.8 --- The relationship between p3 8 MAPK and inducible nitric oxide synthase (iNOS) expression --- p.113 / Chapter 3.8.1 --- Effects of TNF-α on the iNOS expression in C6 cells --- p.113 / Chapter 3.8.2 --- Role of TNF-receptors (TNF-R) subtypes in the TNF-α- induced iNOS expression in C6 cells --- p.115 / Chapter 3.8.3 --- The signaling system mediating TNF-α-induced iNOS expression in C6 cells --- p.115 / Chapter 3.8.3.1 --- The involvement of p38 MAPK in the TNF-α-induced iNOS expression in C6 cells --- p.117 / Chapter 3.8.3.2 --- The involvement of PKA in the TNF-α-induced iNOS expression in C6 cells --- p.119 / Chapter 3.9 --- The relationship between p38 MAPK and cAMP-responsive element binding protein (CREB) expression --- p.120 / Chapter 3.9.1 --- Effects of TNF-α on the CREB expression in C6 cells --- p.120 / Chapter 3.9.2 --- Role of TNF-receptors (TNF-R) subtypes in the TNF-α- induced CREB expression in C6 cells --- p.124 / Chapter 3.9.3 --- The signaling system mediating TNF-α-induced CREB expression in C6 cells --- p.126 / Chapter 3.9.3.1 --- The involvement of p38 MAPK in the TNF-α-induced CREB expression in C6 cells --- p.126 / Chapter 3.9.3.2 --- The involvement of PKC in the TNF-α-induced CREB expression in C6 cells --- p.128 / Chapter 3.9.3.3 --- The involvement of PKA in TNF-α-induced CREB expression in C6 cells --- p.129 / Chapter 3.9.4 --- The relationship between CREB and β-adrenergic mechanisms in C6 cells --- p.136 / Chapter 3.9.4.1 --- Effects of isoproterenol and propanol on CREB mRNA levels in C6 cells --- p.136 / Chapter 3.9.4.2 --- Effects of β1-agonist and -antagonist on CREB mRNA levels in C6 cells --- p.139 / Chapter 3.9.4.3 --- Effects of (32-agonist and -antagonist on CREB mRNA levels in C6 cells --- p.142 / Chapter 3.10 --- The relationship between p38 MAPK and transcription factor c-fos expression --- p.146 / Chapter 3.10.1 --- Effects of TNF-α on the c-fos expression in C6 cells --- p.146 / Chapter 3.10.2 --- Role of TNF-receptors (TNF-R) subtypes in the TNF-α- induced c-fos expression in C6 cells --- p.146 / Chapter 3.10.3 --- The signaling system mediating TNF-α-induced c-fos expression in C6 cells --- p.149 / Chapter 3.10.3.1 --- The involvement of p38 MAPK in the TNF-α-induced c-fos expression in C6 cells --- p.149 / Chapter 3.10.3.2 --- The involvement of PKC in the TNF-α-induced c-fos expression in C6 cells --- p.151 / Chapter 3.10.3.3 --- The involvement of PKA in TNF-α-induced c-fos expression in C6 cells --- p.154 / Chapter 3.10.4 --- The relationship between c-fos and β-adrenergic mechanisms in C6 cells --- p.157 / Chapter 3.10.4.1 --- Effects of isoproterenol and propanolol on c-fos mRNA levels in C6 cells --- p.157 / Chapter 3.10.4.2 --- Effects of β1-agonist and -antagonist on c-fos mRNA levels in C6 cells --- p.160 / Chapter 3.10.4.3 --- Effects of β2-agonist and -antagonist on c-fos mRNA levels in C6 cells --- p.164 / Chapter 3.11 --- The relationship between p38 MAPK and transcription factor NF-kB expression --- p.168 / Chapter 3.11.1 --- Effects of TNF-α on the NF-kB expression in C6 cells --- p.168 / Chapter 3.11.2 --- Role of TNF-receptors (TNF-R) subtypes in the TNF-α- induced NF-kB expression in C6 cells --- p.168 / Chapter 3.11.3 --- The signaling system mediating TNF-α-induced NF-kB expression in C6 cells --- p.171 / Chapter 3.11.3.1 --- The involvement of p38 MAPK in the TNF-α-induced NF-kB expression in C6 cells --- p.171 / Chapter 3.11.3.2 --- The involvement of PKC in the TNF-α-induced NF-kB expression in C6 cells --- p.173 / Chapter Chapter 4 --- DISCUSSION AND CONCLUSION / Chapter 4.1 --- Effects of tumor-necrosis factor-alpha (TNF-α) on C6 cell proliferations --- p.176 / Chapter 4.2 --- The Signaling System Involved in TNF-α-Induced p38 MAPK Expression in C6 cells --- p.178 / Chapter 4.3 --- The Signaling System Involved in TNF-α-Induced iNOS Expression in C6 cells --- p.184 / Chapter 4.4 --- The Signaling System Involved in TNF-α-Induced CREB Expression in C6 cells --- p.186 / Chapter 4.5 --- The Signaling System Involved in TNF-α-Induced c-fos Expressionin in C6 cells --- p.190 / Chapter 4.6 --- The Signaling System Involved in TNF-α-Induced NF-kB Expression in C6 cells --- p.193 / Chapter 4.7 --- Conclusions --- p.195 / Chapter 4.8 --- Possible application / References
2

Investigating a role for the ATP-binding cassette transporters A1 and G1 during synaptic remodeling in the adult mouse

Pearson, Vanessa. January 2007 (has links)
Glial-derived lipoparticles facilitate the transport of cholesterol and lipids between cells within the CNS and have been shown to support neuronal growth and synaptogenesis. Partial deafferentation of the hippocampus by unilateral entorhinal cortex lesioning (uECL) induces well-described cytoarchitectural reorganisation and reactive sprouting in the dentate gyrus (DG). Previous studies have demonstrated a dynamic regulation of cholesterol homeostasis in the hippocampus following deafferentation, and suggest that mechanisms facilitating cholesterol transport are important during reinnervation. Furthermore, there is growing evidence that statins, a family of cholesterol-lowering drugs which inhibit the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoA-R), may confer neuroprotection following trauma. / The ATP binding cassette transporters (ABC) A1 and G1 assist the generation of lipoparticles by mediating cholesterol and phospholipid efflux to extracellular apolipoprotein E (APOE), the brain's primary lipoprotein. To examine a role for these transporters in the regulation of cholesterol efflux during synaptic remodelling, and the effects of low-dose pravastatin (a potent HMGCoA-R inhibitor) on such intercellular transport mechanisms, we measured the expression of ABCA1, ABCG1, APOE, apoE(LDL)R and HMGCoA-R in the hippocampus of saline and pravastatin treated mice over time following uECL. It is shown here that ABCA1 and not ABCG1 is up-regulated at the level of mRNA and protein expression, along with APOE, in the hippocampus during active regeneration (14DPL) as determined by histochemical analysis of acetylcholinesterase staining density in the DG. While pravastatin treatment was observed to differentially influence the expression of ABCA1 mRNA and protein over time, no effects on APOE or ABCG1 mRNA expression were observed following uECL. Additionally, HMGCoA-R mRNA expression was significantly down-regulated at 21 DPL in the deafferented hippocampus in pravastatin-treated animals. While the low-dose pravastatin treatment applied here was sufficient to inhibit HMGCoA-R activity in the liver, enzymatic activity was unaffected in the cortex. / These findings suggest that ABCA1 and not ABCG1 may be important in the APOE-mediated cholesterol recycling observed during the active phase of neural reinnervation in response to uECL. In addition, the results presented here suggest that the administration of clinically-relevant statin therapy may be sufficient to influence the regulation of cerebral cholesterol homeostasis following trauma in the adult mouse brain.
3

Investigating a role for the ATP-binding cassette transporters A1 and G1 during synaptic remodeling in the adult mouse

Pearson, Vanessa. January 2007 (has links)
No description available.
4

Effects of tumor necrosis factor-alpha on glucose uptake in primary cultured rat astrocytes.

January 2005 (has links)
Wong Chun Lung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 202-225). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Abstract --- p.iii / 摘要 --- p.vi / Acknowledgements --- p.ix / Table of Contents --- p.x / List of Abbreviations --- p.xv / List of Figures --- p.xix / List of Tables --- p.xx iii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- "Neurodegeneration, Inflammation and Gliosis" --- p.1 / Chapter 1.2 --- Anatomy of the CNS --- p.5 / Chapter 1.3 --- Astrocytes --- p.6 / Chapter 1.3.1 --- Morphology and Identification of Astrocytes --- p.6 / Chapter 1.3.2 --- Physiological Functions of Astrocytes in the CNS --- p.7 / Chapter 1.3.2.1 --- Induction of Blood-brain Barrier (BBB) --- p.7 / Chapter 1.3.2.2 --- Metabolism of Neurotransmitters --- p.9 / Chapter 1.3.2.3 --- Nursing Role of Astrocytes --- p.9 / Chapter 1.3.2.4 --- Immunological Functions of Astrocytes --- p.10 / Chapter 1.3.3 --- Neonatal Rat Cortical Astrocytes as In Vitro Model --- p.12 / Chapter 1.4 --- Cytokines in Brain Damage --- p.14 / Chapter 1.4.1 --- Lipopolysaccharides (LPS) --- p.16 / Chapter 1.4.2 --- Tumor Necrosis Factor-α (TNF-α) --- p.17 / Chapter 1.4.3 --- Interleukin-1 (IL-1) --- p.19 / Chapter 1.4.4 --- Interleukin-6 (IL-6) --- p.20 / Chapter 1.4.5 --- Interferon-γ (IFN-γ) --- p.21 / Chapter 1.5 --- Cytokines-induced Signaling Cascade --- p.22 / Chapter 1.5.1 --- TNF Receptors --- p.23 / Chapter 1.5.2 --- Ca2+ --- p.25 / Chapter 1.5.3 --- MAPK --- p.26 / Chapter 1.5.4 --- PICA --- p.27 / Chapter 1.5.5 --- NFkB --- p.29 / Chapter 1.6 --- Glucose Metabolism in the Brain and Glucose Transporters --- p.31 / Chapter 1.6.1 --- Glucose Transporters in the Brain --- p.32 / Chapter 1.6.2 --- Glucose Transporters in Brain Damage --- p.34 / Chapter 1.7 --- Ascorbic Acid Metabolism in the Brain --- p.36 / Chapter 1.8 --- Aim and Scope of this Project --- p.39 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- Neonatal Sprawley 一Dawley Rats --- p.43 / Chapter 2.1.2 --- Plain Dulbecco Modified Eagle Medium ´ؤ Formula 12 (pDF12) --- p.43 / Chapter 2.1.3 --- Complete DF-12(cDF12) --- p.43 / Chapter 2.1.4 --- Phosphate Buffered Saline (PBS) --- p.44 / Chapter 2.1.5 --- Hank's Buffer (HSB) --- p.44 / Chapter 2.1.6 --- D/L-Homocysteine Buffer --- p.44 / Chapter 2.1.7 --- "LPS, Cytokines and Pentoxifylline" --- p.45 / Chapter 2.1.8 --- Specific TNF Receptor Agonist: TNF antibodies --- p.45 / Chapter 2.1.9 --- Calcium Modulators --- p.45 / Chapter 2.1.10 --- PKA Modulators --- p.46 / Chapter 2.1.11 --- NFkB Inhibitors --- p.47 / Chapter 2.1.12 --- MAPK Inhibitors --- p.47 / Chapter 2.1.13 --- β-Adrenergic Receptor Modulators --- p.47 / Chapter 2.1.14 --- Reagents for RNA and Protein Isolation --- p.48 / Chapter 2.1.15 --- Reagents for Reverse Transcription-Polymerase Chain Reaction (RT-PCR) --- p.48 / Chapter 2.1.16 --- Reagents for DNA Electrophoresis --- p.49 / Chapter 2.1.17 --- Reagents for Real-time PCR --- p.51 / Chapter 2.1.18 --- Reagents for Western Blotting --- p.51 / Chapter 2.1.19 --- Reagents for MTT Assay --- p.51 / Chapter 2.1.20 --- Reagents for 3H-Thymidine Incorporation Assay --- p.52 / Chapter 2.1.21 --- Reagents for Glucose Uptake Assay --- p.52 / Chapter 2.1.22 --- Reagents for Ascorbic Acid Accumulation Assay --- p.53 / Chapter 2.1.23 --- Reagents for Immunostammg --- p.53 / Chapter 2.1.24 --- Other Chemicals and Reagents --- p.53 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- Preparation of Primary Cultured Rat Astrocytes --- p.55 / Chapter 2.2.2 --- Measuring Cell Viability: MTT Assay --- p.56 / Chapter 2.2.3 --- Measuring Cell Proliferation: 3H Thymidine Incorporation Assay --- p.57 / Chapter 2.2.4 --- Measuring Glucose Uptake: Zero-trans Glucose Uptake Assay --- p.58 / Chapter 2.2.5 --- Measuring Ascorbic Acid Accumulation --- p.60 / Chapter 2.2.6 --- Total Protein Extraction --- p.61 / Chapter 2.2.7 --- Western Blotting --- p.62 / Chapter 2.2.8 --- Immunostaining --- p.64 / Chapter 2.2.9 --- Isolation of RNA --- p.64 / Chapter 2.2.10 --- Measurement of RNA Yield --- p.65 / Chapter 2.2.11 --- RNA Gel Electrophoresis --- p.66 / Chapter 2.2.12 --- Reverse Transcription (RT) --- p.66 / Chapter 2.2.13 --- Polymerase Chain Reaction (PCR) --- p.67 / Chapter 2.2.14 --- Separation of PCR Products by Agarose Gel Electrophoresis --- p.67 / Chapter 2.2.15 --- Quantization of PCR Products and Western Blotting --- p.68 / Chapter 2.2.16 --- Real-time PCR --- p.68 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Role of Calcium Ions (Ca2+) in TNF-α-induced Astrocyte Proliferation --- p.70 / Chapter 3.1.1 --- Effects of Changes of Extracellular Ca2+ on Astrocyte Viability --- p.72 / Chapter 3.1.2 --- Effects of Other Divalent Ions on Astrocyte Viability --- p.74 / Chapter 3.1.3 --- Effects of Changes of Intracellular Ca2+ on Astrocyte Viability --- p.78 / Chapter 3.1.4 --- Role of Ca2+ on TNF-α-mduced Proliferation in Astrocytes --- p.85 / Chapter 3.1.5 --- Role of Other Divalent Ions on tnf-α-mduced Proliferation in Astrocytes --- p.90 / Chapter 3.2 --- Effect of Cytokines on Glucose Uptake in Rat Astrocytes --- p.95 / Chapter 3.2.1 --- Basal level of Glucose Uptake in Astrocytes and Effects of Cytokines on Glucose Uptake in Astrocytes --- p.95 / Chapter 3.2.2 --- Signaling Cascade of LPS- and TNF-α-induced Glucose Uptake in Astrocytes --- p.120 / Chapter (A) --- TNFR Subtypes Mediating TNF-a-induced Glucose Uptake --- p.121 / Chapter (B) --- MAPK --- p.125 / Chapter (C) --- PKA --- p.133 / Chapter (D) --- NFkB --- p.139 / Chapter (E) --- Other Mechanisms / Signalling molecules --- p.150 / Chapter (1) --- Interaction with β-Adrenegic Mechanism / Chapter (2) --- Role of cGMP --- p.154 / Chapter (3) --- Effect of Mg2+ on LPS- / TNF-α- induced Glucose Uptake in Astrocytes --- p.156 / Chapter (4) --- Possible Involvement of IGF-1 System --- p.160 / Chapter 3.2.3 --- Summary --- p.163 / Chapter 3.3 --- Effects of LPS and Cytokines on AA Accumulation in Astrocytes --- p.164 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Role of Calcium ions (Ca2+) in TNF-α-induced Astrocyte Proliferation --- p.177 / Chapter 4.1.1 --- Drastic Changes in Extracellular Ca2+ Caused Astrocyte Death --- p.178 / Chapter 4.1.2 --- Extraordinary Role of Ca2+ in Astrocytes Survival --- p.178 / Chapter 4.1.3 --- Elevation of [Ca2+]i Reduced Astrocyte Viability --- p.180 / Chapter 4.1.4 --- Failure of Verapamil to Block TNF-α-induced Astrocyte Proliferation --- p.182 / Chapter 4.2 --- Hypothesis for the Relationship between Cytokines and Energy Metabolism --- p.185 / Chapter 4.2.1 --- Mechanism and Signaling Cascade of the Elevated Glucose Uptake --- p.186 / Chapter 4.2.2 --- Increased Glucose Uptake by Cytokines: Friend or Foe? --- p.191 / Chapter 4.2.3 --- Depletion of AA Pool by LPS --- p.194 / Chapter 4.2.4 --- Possible Bedside Application of the Findings --- p.195 / Chapter 4.3 --- Prospects of This Study and Concluding Remarks --- p.197 / Appendix --- p.201 / References --- p.202

Page generated in 0.0812 seconds