• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Connecting Chemical and Omics Domains for Drug Discovery and Repurposing

Reigle, James K., M.S. 05 October 2021 (has links)
No description available.
2

Estimation des réseaux cérébraux à partir de l’EEG-hr : application sur les maladies neurologiques / Brain network estimation from dense EEG signals : application to neurological disorders

Kabbara, Aya 19 June 2018 (has links)
Le cerveau humain est un réseau très complexe. Le fonctionnement cérébral ne résulte donc pas de l'activation de régions cérébrales isolées mais au contraire met en jeu des réseaux distribués dans le cerveau (Bassett and Sporns, 2017; McIntosh, 2000). Par conséquent, l'analyse de la connectivité cérébrale à partir des données de neuroimagerie occupe aujourd'hui une place centrale dans la compréhension des fonctions cognitives (Sporns, 2010). Grâce à son excellente résolution spatiale, l'IRMf est devenue l'une des méthodes non invasives les plus couramment utilisées pour étudier cette connectivité. Cependant, l'IRMf a une faible résolution temporelle ce qui rend très difficile le suivi de la dynamique des réseaux cérébraux. Un défi considérable en neuroscience cognitive est donc l'identification et le suivi des réseaux cérébraux sur des durées courtes (Hutchison et al., 2013), généralement <1s pour une tâche de dénomination d'images, par exemple. Jusqu'à présent, peu d'études ont abordé cette question qui nécessite l'utilisation de techniques ayant une résolution temporelle très élevée (de l'ordre de la ms), ce qui est le cas pour la magnéto- ou l'électro-encéphalographie (MEG ou EEG). Cependant, l'interprétation des mesures de connectivité à partir d'enregistrements effectués au niveau des électrodes (scalp) n'est pas simple, car ces enregistrements ont une faible résolution spatiale et leur précision est altérée par les effets de conduction par le volume (Schoffelen and Gross, 2009). Ainsi, au cours des dernières années, l'analyse de la connectivité fonctionnelle au niveau des sources corticales reconstruites à partir des signaux du scalp a fait l'objet d'un intérêt croissant. L'avantage de cette méthode est d'améliorer la résolution spatiale, tout en conservant l'excellente résolution temporelle de l'EEG ou de la MEG (Hassan et al., 2014; Hassan and Wendling, 2018; Schoffelen and Gross, 2009). Cependant, l'aspect dynamique n'a pas été suffisamment exploité par cette méthode. Le premier objectif de cette thèse est de montrer comment l'approche « EEG connectivité source » permet de suivre la dynamique spatio-temporelle des réseaux cérébraux impliqués soit dans une tache cognitive, soit à l'état de repos. Par ailleurs, les études récentes ont montré que les désordres neurologiques sont le plus souvent associés à des anomalies dans la connectivité cérébrale qui entraînent des altérations dans des réseaux cérébraux «large-échelle» impliquant des régions distantes (Fornito and Bullmore, 2014). C'est particulièrement le cas pour l'épilepsie et les maladies neurodégénératives (Alzheimer, Parkinson) qui constituent, selon l'OMS, un enjeu majeur de santé publique. Dans ce contexte, la demande clinique est très forte pour de nouvelles méthodes capables d'identifier des réseaux pathologiques, méthodes simples à mettre en œuvre et surtout non invasives. Ceci est le deuxième objectif de cette thèse. / The human brain is a very complex network. Cerebral function therefore does not imply activation of isolated brain regions but instead involves distributed networks in the brain (Bassett and Sporns, 2017, McIntosh, 2000). Therefore, the analysis of the brain connectivity from neuroimaging data has an important role to understand cognitive functions (Sporns, 2010). Thanks to its excellent spatial resolution, fMRI has become one of the most common non-invasive methods used to study this connectivity. However, fMRI has a low temporal resolution which makes it very difficult to monitor the dynamics of brain networks. A considerable challenge in cognitive neuroscience is therefore the identification and monitoring of brain networks over short time durations(Hutchison et al., 2013), usually <1s for a picture naming task, for example. So far, few studies have addressed this issue which requires the use of techniques with a very high temporal resolution (of the order of the ms), which is the case for magneto- or electro-encephalography (MEG or EEG). However, the interpretation of connectivity measurements from recordings made at the level of the electrodes (scalp) is not simple because these recordings have low spatial resolution and their accuracy is impaired by volume conduction effects (Schoffelen and Gross, 2009). Thus, during recent years, the analysis of functional connectivity at the level of cortical sources reconstructed from scalp signals has been of increasing interest. The advantage of this method is to improve the spatial resolution, while maintaining the excellent resolution of EEG or MEG (Hassan et al., 2014; Hassan and Wendling, 2018; Schoffelen and Gross, 2009). However, the dynamic aspect has not been sufficiently exploited by this method. The first objective of this thesis is to show how the EEG connectivity approach source "makes it possible to follow the spatio-temporal dynamics of the cerebral networks involved either in a cognitive task or at rest. Moreover, recent studies have shown that neurological disorders are most often associated with abnormalities in cerebral connectivity that result in alterations in wide-scale brain networks involving remote regions (Fornito and Bullmore, 2014). This is particularly the case for epilepsy and neurodegenerative diseases (Alzheimer's, Parkinson's) which constitute, according to WHO, a major issue of public health.In this context, the need is high for new methods capable of identifying Pathological networks, from easy to use and non-invasive techniques. This is the second objective of this thesis.
3

Multielectrode microstimulation for temporal lobe epilepsy

Arcot Desai, Sharanya 13 January 2014 (has links)
Multielectrode arrays may have several advantages compared to the traditional single macroelectrode brain electrical stimulation technique including less tissue damage due to implantation and the ability to deliver several spatio-temporal patterns of stimulation. Prior work on cell cultures has shown that multielectrode arrays are capable of completely stopping seizure-like spontaneous bursting events through a distributed asynchronous multi-site approach. In my studies, I used a similar approach for controlling seizures in a rat model of temporal lobe epilepsy. First, I developed a new method of electroplating in vivo microelectrode arrays for durably improving their impedance. I showed that microelectrode arrays electroplated through the new technique called sonicoplating, required the least amount of voltage in current controlled stimulation studies and also produced the least amplitude and duration of stimulation artifact compared to unplated, DC electroplated or pulse-plated microelectrodes. Second, using c-fos immunohistochemistry, I showed that 16-electrode sonicoplated microelectrode arrays can activate 5.9 times more neurons in the dorsal hippocampus compared to a single macroelectrodes while causing < 77% the tissue damage. Next, through open-loop multisite asynchronous microstimulation, I reduced seizure frequency by ~50% in the rodent model of temporal lobe epilepsy. Preliminary studies aimed at using the same stimulation protocol in closed-loop responsive and predictive seizure control did not stop seizures. Finally, through an internship at Medtronic Neuromodulation, I worked on developing and implementing a rapid algorithm prototyping research tool for closed-loop human deep brain stimulation applications.
4

Integrating Human Population Genetics And Genomics To Elucidate The Etiology Of Brain Disorders

Sulovari, Arvis 01 January 2017 (has links)
Brain disorders present a significant burden on affected individuals, their families and society at large. Existing diagnostic tests suffer from a lack of genetic biomarkers, particularly for substance use disorders, such as alcohol dependence (AD). Numerous studies have demonstrated that AD has a genetic heritability of 40-60%. The existing genetics literature of AD has primarily focused on linkage analyses in small family cohorts and more recently on genome-wide association analyses (GWAS) in large case-control cohorts, fueled by rapid advances in next generation sequencing (NGS). Numerous AD-associated genomic variations are present at a common frequency in the general population, making these variants of public health significance. However, known AD-associated variants explain only a fraction of the expected heritability. In this dissertation, we demonstrate that systems biology applications that integrate evolutionary genomics, rare variants and structural variation can dissect the genetic architecture of AD and elucidate its heritability. We identified several complex human diseases, including AD and other brain disorders, as potential targets of natural selection forces in diverse world populations. Further evidence of natural selection forces affecting AD was revealed when we identified an association between eye color, a trait under strong selection, and AD. These findings provide strong support for conducting GWAS on brain disorder phenotypes. However, with the ever-increasing abundance of rare genomic variants and large cohorts of multi-ethnic samples, population stratification becomes a serious confounding factor for GWAS. To address this problem, we designed a novel approach to identify ancestry informative single nucleotide polymorphisms (SNPs) for population stratification adjustment in association analyses. Furthermore, to leverage untyped variants from genotyping arrays – particularly rare variants – for GWAS and meta-analysis through rapid imputation, we designed a tool that converts genotype definitions across various array platforms. To further elucidate the genetic heritability of brain disorders, we designed approaches aimed at identifying Copy Number Variations (CNVs) and viral insertions into the human genome. We conducted the first CNV-based whole genome meta-analysis for AD. We also designed an integrated approach to estimate the sensitivity of NGS-based methods of viral insertion detection. For the first time in the literature, we identified herpesvirus in NGS data from an Alzheimer’s disease brain sample. The work in this dissertation represents a three-faceted advance in our understanding of brain disease etiology: 1) evolutionary genomic insights, 2) novel resources and tools to leverage rare variants, and 3) the discovery of disease-associated structural genomic aberrations. Our findings have broad implications on the genetics of complex human disease and hold promise for delivering clinically useful knowledge and resources.

Page generated in 0.0446 seconds