Spelling suggestions: "subject:"brain.research."" "subject:"mainresearch.""
91 |
Temporally distinct impairments in cognitive function following a sensitizing regimen of methamphetamineJanetsian, Sarine Sona 01 August 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Methamphetamine (MA) is a widely abused psychostimulant that has been shown to evoke an array of neurobiological abnormalities and cognitive deficits in humans and in rodent models (Marshall & O'Dell, 2012). Alterations in cognitive function after repeated drug use may lead to impaired decision-making, a lack of behavioral control, and ultimately the inability to abstain from drug use. Human studies have shown that alterations in neurobiology resulting from prolonged MA use may lead to a number of cognitive deficits, including impairments in executive function, learning, memory, and impulsivity. These impairments, specifically those that engage the prefrontal cortex (PFC) or hippocampus (HC), may persist or recover based on the duration of abstinence. In rodents, repeated intermittent injections of MA yield protracted changes in neurobiology and behavior, which have been shown to effectively model a number of the biological and cognitive abnormalities observed in addiction. In order to assess the temporal evolution of impaired cognitive function throughout abstinence, sensitization was first induced in rats (7 x 5.0 mg/kg MA over 14 days). MA-treated rats initially exhibited a robust increase in locomotion that transitioned to stereotypy as the induction phase progressed. Then, the effects of MA sensitization on social interaction (SI), temporal order recognition (TOR) and novel object recognition (NOR) was assessed at one-day and 30-days post induction. No differences were observed in SI in either group or after a single injection of MA. However, an acute injection of 5.0 mg/kg of MA 30-minutes prior to testing dramatically reduced SI time. Impairments in TOR and NOR were observed in MA-treated rats after one day of abstinence, and impairments in TOR, but not NOR, were observed on day 30 of abstinence. No differences in TOR and NOR after a single injection of MA or saline were observed. These data establish that after 30 days of abstinence from a sensitizing regimen of MA, the ability to recall the temporal sequence that two stimuli were encountered was impaired and that was not attributable to impaired novelty detection. These data also suggest that at least some of the neurocognitive abnormalities caused by chronic MA administration may normalize after prolonged abstinence, since the ability to detect novelty recovered after 30 days of abstinence. These data provide compelling support that, since MA-sensitization caused temporal deficits in memory, PFC and HC function may be differentially impaired throughout the time course of abstinence.
|
Page generated in 0.0442 seconds