Spelling suggestions: "subject:"breakinduced replication"" "subject:"breakinduced eplication""
1 |
Understanding the mechanisms underlying DSB repair-induced mutagenesis at distant loci in yeastSaini, Natalie 22 May 2014 (has links)
Increased mutagenesis is a hallmark of cancers. On the other hand, this can trigger the generation of polymorphisms and lead to evolution. Lately, it has become clear that one of the major sources of increased mutation rates in the genome is chromosomal break formation and repair.
A variety of factors can contribute to the generation of breaks in the genome. A paradoxical source of breaks is the sequence composition of the genomic DNA itself. Eukaryotic and prokaryotic genomes contain sequence motifs capable of adopting secondary structures often found to be potent inducers of double strand breaks culminating into rearrangements. These regions are therefore termed fragile sequence motifs. Here, we demonstrate that in addition to being responsible for triggering chromosomal rearrangements, inverted repeats and GAA/TTC repeats are also potent sources of mutagenesis. Repeat-induced mutagenesis extends up to 8 kb on either side of the break point. Remarkably, error-prone repair of the break by Polζ reconstitutes the repeats making them a long term source of mutagenesis.
Despite its negative connotations for genome stability, the mechanisms underlying the unstable nature of double strand break repair pathways are not known. Previous studies have demonstrated that break induced replication (BIR), a mechanism employed to repair broken chromosomes with only one repairable end, is highly mutagenic, undergoes frequent template switching and often yields half-crossovers. In the work presented here, we show that the instabilities inherent to BIR can be attributed to its unusual mode of synthesis. We determined that BIR proceeds via a migrating bubble with long stretches of single-stranded DNA and culminates with conservative inheritance of the newly synthesized DNA.
We propose that the mechanisms described here might be important for generation of repair-associated mutagenesis in higher organisms. Secondary structure forming repeats like inverted repeats have been found to be enriched in cancer cells. These motifs often constitute chromosomal rearrangement hot-spots and demonstrate the phenomenon of kataegis. This study provides a mechanistic insight into how such breakage-prone motifs contribute to hypermutability of cancer genomes.
|
2 |
Defining the roles of ATR activators ETAA1 and TopB1 in the alternative lengthening of telomeres pathwayLock, Ying Jie 03 February 2022 (has links)
Alternative lengthening of telomeres (ALT) is a telomerase-independent mechanism utilized by a subset of cancers to promote replicative immortality. The ALT mechanism is driven by increased replication stress and persistent DNA damage response signaling that leads to a homology-directed repair mechanism called break-induced telomere synthesis (BITS). In particular, ALT cells are hypersensitive to inhibition of ataxia telangiectasia Rad3-related (ATR), a DNA damage response kinase implicated in telomere mobility and recruitment of repair proteins for telomere elongation in ALT. However, little is known about what regulates ATR activity at ALT telomeres. Given the importance of ATR in the ALT mechanism, we hypothesized that known ATR activators, ETAA1 and TopBP1, regulate ALT activity and telomere synthesis. Here, we show that ETAA1 and TopBP1 localize to ALT telomeres at sites of ALT activity and telomeric damage. Furthermore, depletion of ETAA1 and TopBP1 leads to defects in ATR signaling, a decrease in BITS and compensatory engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) for replication stress resolution. Taken together, our findings show that both ETAA1 and TopBP1 are important for mediating BITS at ALT telomeres and may better inform our efforts in targeting the ATR signaling pathway in ALT-positive cancers.
|
3 |
Investigating the roles of the Srs2 and Pif1 helicases in DNA double-strand break repair in Saccharomyces cerevisiaeVasianovich, Yuliya January 2015 (has links)
DNA double strand breaks (DSBs), which may occur during DNA replication or due to the action of genotoxic agents, are extremely dangerous DNA lesions as they can cause chromosomal rearrangements and cell death. Therefore, accurate DSB repair is vital for genome stability and cell survival. Two main mechanisms serve to repair DNA DSBs: non-homologous end joining, which re-ligates DNA ends together, and homologous recombination (HR), which restores broken DNA using homologous sequence as a template for repair. One-ended DSBs are a subject for the specialised HR-dependent repair pathway known as break-induced replication (BIR). At low frequency, DNA breaks can also be healed by telomerase, which normally extends telomeres at natural chromosome ends, but may also add de novo telomeres to DSBs due to their similarity to chromosome ends. De novo telomere addition is a deleterious event, which is effectively inhibited by the nuclear Pif1 (nPif1) helicase phosphorylated at the TLSSAES motif in response to DNA damage. In this study, it is reported that the same regulatory motif of nPif1 is also required for DSB repair via BIR. The requirement of the nPif1 TLSSAES sequence in BIR is dependent on the functional DNA damage response (DDR). Thus, nPif1 phosphorylation by the DDR machinery might mediate the role of nPif1 in BIR. In contrast, the nPif1 regulatory motif is not essential for BIR at telomeres in cells lacking telomerase. These observations indicate that the mechanism of nPif1 function in DSB repair via BIR and in BIR at telomeres might be different. In this work, a protocol for nPif1 pull-down was optimized to reveal the mechanism of the phosphorylation-dependent nPif1 functions in cells undergoing DNA repair, i. e. the mechanism of nPif1-mediated inhibition of de novo telomere addition and promoting DSB repair via BIR. In future, this protocol can be used to dissect the role of nPif1 in DNA repair through the identification of its potential interacting partners. The Srs2 helicase negatively regulates HR via dismantling Rad51 filaments. According to preliminary data from the laboratory of Sveta Makovets, Srs2 also promotes de novo telomere addition at DSBs in a Rad51-dependent manner. The work presented here establishes that Srs2 is dispensable for telomerase-mediated addition of TG1-3 repeats to DSBs. Instead, Srs2 is required for the reconstitution of the complementary DNA strand after telomerase action, thus ensuring the completion of de novo telomere addition. Overall, this study demonstrates that recombination-dependent DSB repair and de novo telomere addition share common regulatory components, i. e. the nPif1 helicase phosphorylated in response to DNA damage and the Srs2 helicase. Phosphorylated nPif1 promotes DSB repair via BIR in addition to its known role in inhibition of telomerase at DSBs, whereas Srs2 uses its well established ability to remove Rad51 from ssDNA to promote the restoration of dsDNA and thus to complete de novo telomere addition.
|
4 |
Genomic instability at a polypurine/polypyrimidine repeat sequenceZavada, Nathen S. 02 September 2022 (has links)
No description available.
|
5 |
Accelerated adaptation through stimulated copy number variation in Saccharomyces cerevisiaeHull, Ryan January 2018 (has links)
Accelerated Adaptation through Stimulated Copy Number Variation in Saccharomyces cerevisiae Ryan Matthew Hull Repetitive regions of the genome, such as the centromeres, telomeres and ribosomal DNA account for a large proportion of the genetic variation between individuals. Differences in the number of repeat sequences between individuals is termed copy number variation (CNV) and is rife across eukaryotic genomes. CNV is of clinical importance as it has been implicated in many human disorders, in particularly cancers where is has been associated with tumour growth and drug resistance. The copper-resistance gene CUP1 in Saccharomyces cerevisiae is one such CNV gene. CUP1 is transcribed from a copper inducible promoter and encodes a protein involved in copper detoxification. In this work I show that yeast can regulate their repeat levels of the CUP1 gene through a transcriptionally stimulated CNV mechanism, as a direct adaptation response to a hostile environment. I characterise the requirement of the epigenetic mark Histone H3 Lysine 56 acetylation (H3K56ac) for stimulated CNV and its limitation of only working at actively transcribed genes. Based upon my findings, I propose a model for how stimulated CNV is regulated in yeast and show how we can pharmacologically manipulate this mechanism using drugs, like nicotinamide and rapamycin, to stimulate and repress a cell's ability to adapt to its environment. I further show that the model is not limited to high-copy CUP1 repeat arrays, but is also applicable to low-copy systems. Finally, I show that the model extends to other genetic loci in response to different challenging environments, such as formaldehyde stimulation of the formaldehyde-resistance gene SFA1. To the best of our knowledge, this is the first example of any eukaryotic cell undergoing genome optimisation as a novel means to accelerate its adaptation in direct response to its environment. If conserved in higher eukaryotes, such a mechanism could have major implications in how we consider and treat disorders associated with changes in CNV.
|
6 |
Instability and Extrachromosomal Circular DNA Formation at Microsatellites and Unstable DNA SequencesShanahan, Matilyn M. 02 September 2022 (has links)
No description available.
|
7 |
Cascades of genetic instability resulting from compromised break-induced replicationVasan, Soumini January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Break-induced replication (BIR) is a mechanism to repair double-strand breaks
(DSBs) that possess only a single end that can find homology in the genome. This situation can result from the collapse of replication forks or telomere erosion. BIR frequently produces various genetic instabilities including mutations, loss of heterozygosity, deletions, duplications, and template switching that can result in copy-number variations (CNVs). An important type of genomic rearrangement specifically linked to BIR is half crossovers (HCs), which result from fusions between parts of recombining chromosomes. Because HC formation produces a fused molecule as well as a broken chromosome fragment, these events could be highly destabilizing. Here I demonstrate that HC formation results from the interruption of BIR caused by a defective replisome or premature onset of mitosis. Additionally, I document the existence of half crossover instability cascades (HCC) that resemble cycles of non-reciprocal translocations (NRTs) previously described in human tumors. I postulate that HCs represent a potent source of genetic destabilization with significant consequences that mimic those observed in human diseases, including cancer.
|
Page generated in 0.1008 seconds