• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 13
  • 8
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 25
  • 23
  • 19
  • 18
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

[en] DROPLET BREAK-UP IN A FLOW THROUGH AN ORIFICE / [pt] QUEBRA DE GOTA NO ESCOAMENTO ATRAVÉS DE UM ORIFÍCIO

SERGIO PAULO GOMES PINHO 13 March 2015 (has links)
[pt] Na indústria do petróleo, durante a produção de um campo, é muito utilizada a injeção da água do mar para manutenção da pressão do reservatório. Com a injeção, há o aumento da fração de água no fluido produzido formando assim uma emulsão com uma determinada distribuição do tamanho de gotas. No sistema de produção, esta mistura sofre variações de pressão e temperatura que impactam na distribuição do tamanho de gotas da emulsão. As mudanças mais significativas nestes parâmetros ocorrem nos chokes instalados na chegada à planta de processo. O conhecimento desta distribuição é importante, pois influencia diretamente no dimensionamento dos separadores que serão instalados na plataforma, no caso offshore. O parâmetro considerado como o que melhor descrevia o processo de quebra de gotas era a potência dissipada no orifício. Nos experimentos desenvolvidos para avaliar a quebra de gotas nos chokes, foi observado que este termo possuía algumas limitações e um novo ajuste foi proposto para atender aos valores medidos. Nos testes foram utilizados dois tipos de óleos e diferentes orifícios que geraram os dados necessários para elaborar uma nova abordagem, onde a queda de pressão medida apresentou a melhor relação com os diâmetros das gotas após o orifício. Posteriormente, o efeito da viscosidade foi adicionado para que houvesse uma relação válida para ambos os óleos utilizados, tornando assim o modelo de quebra mais abrangente. / [en] In the oil industry, during an oilfield development, the sea water injection is largely used to maintain the reservoir pressure. As a result of this injection, there is the increase of the water fraction in the produced fluid, forming an emulsion with a determined droplet size distribution. In the production system, this mixture flows under different conditions of pressure and temperature that impact the emulsion droplet size distribution. The most meaningful changes of these conditions occur in the chokes that are installed at the process plant arrival. The knowledge of the droplet size distribution is important, because it impacts the sizing of the separators that will be installed at the platform, in an offshore scenario. The parameter that was considered as the most appropriate to describe the droplet break-up process was the energy dissipation rate. During the experiments performed to evaluate the droplet break-up in the chokes, it was observed that this parameter had some limitations and a new adjustment was proposed to fit with the measured values. In the tests, two oils with different viscosities were used while varying orifices characteristics to obtain the needed data to elaborate a new approach. Thus, it was found that the measured pressure drop through the restriction presented the best relation with the droplets diameters measured downstream the orifice. After this, the effect of the oil viscosity was also added to the model so to create a correlation valid for both tested oils. In this way, the break-up model proposed would be more complete and useful for different conditions.
42

Etude numérique de l’impact de la géométrie de la buse de l’injecteur sur l’écoulement à l’intérieur de la buse et l’atomisation primaire / Numerical study of nozzle geometry impact on in-nozzle flow and primary breakup

Aguado, Pablo 22 May 2017 (has links)
Une étude numérique de l’écoulement dans la buse et de l’atomisation primaire en injection Diesel est conduite afin de comprendre le lien entre la géométrie interne de l’injecteur et l’atomisation du carburant. En raison de la complexité des phénomènes impliqués, les effets de compressibilité sont étudiés séparément de ceux liés à la turbulence et à la dynamique tourbillonnaire.Dans une première partie, un modèle à 5 équations pour des écoulements diphasiques à deux espèces est développé et implémenté dans le code IFP-C3D pour analyser les effets de compressibilité sur l’écoulement. Il décrit des mélanges gaz-liquide dont la phase gazeuse est composée de deux espèces : vapeur et gaz non condensable. Le modèle est validé à l’aide de trois cas test très répandus et est appliqué à un injecteur monotrou. Les résultats sont comparés à des données expérimentales, confirmant que le modèle est capable de reproduire la formation de vapeur et la détente de l’air. Dans une seconde partie, l’impact de la géométrie de la buse sur la génération de turbulence, sur la dynamique tourbillonnaire et sur l’atomisation primaire est étudié sous l’hypothèse d’un écoulement incompressible. Large-Eddy Simulation est employée pour simuler l’écoulement dans la buse et proche de sa sortie.La méthodologie employée consiste à comparer des géométries de buse se distinguant par des paramètres de conception très tranchés. Les résultats montrent que l’atomisation du carburant dans la zone d’atomisation primaire est le résultat de un phénomène de haute fréquence engendré par des tourbillons détachés, et un phénomène de basse fréquence causé par filaments tourbillonnaires. Les interactions complexes entre ces tourbillons impactent le type d’atomisation, la stabilité du spray et la taille des gouttes. Il est conclu qu’en agissant sur ces deux types de tourbillons, il est envisageable de contrôler dans certaines limites la dynamique du spray. / Numerical study of nozzle flow and primary breakup in Diesel injection is conducted in order to understand the link between injector geometry and fuel atomization. Owing to the complex physical processes involved, flow compressibility effects are studied separately from turbulence and vortex dynamics.In a first part, a 5-Equation model for two-phase, two-species flows is developed and implemented in the IFP-C3D code to analyze the flow behavior under compressibility effects. It is intended for liquid-gas mixtures where the gas phase is composed of two species, vapor and noncondensable gas. The model is validated against three well-known test cases and is applied to a single hole injector. The results are compared with available experimental and numerical data, showing that it is able to successfully predict vapor formation and air expansion. In a second part, the impact of nozzle geometry on turbulence generation, vortex dynamics and primary breakup is studied assuming incompressible flow. Large-Eddy Simulation is used to simulate the flow inside the nozzle and close to its exit.The investigation strategy consists of comparing different geometries with contrasting design parameters. The results show that fuel atomization in the primary breakup region is driven by a high frequency event triggered by shed vortices, and a low frequency event caused by large string vortices. The complex interaction between them determines the breakup pattern, the spray stability and the size of ligaments and droplets. In view of the results, it is concluded that acting on these two structures makes it possible to control the dynamics of the spray to some extent.
43

Upper Jurassic of the Barrow sub-basin: sedimentology, sequence stratigraphy and implications for reservoir development

Wulff, Keiran January 1991 (has links)
A chronostratigraphic subdivision of the Upper Jurassic synrift sediments in the eastern Barrow Sub-basin was developed from the integration of core logging, petrography, well log sequence analyses and seismic stratigraphy. From this basis, the Callovian to base Cretaceous sediments may be subdivided into five depositional sequences. The development of the sequence boundaries, in most part, is closely related to periods of major changes in basin configuration associated with the sequential breakup of eastern Gondwanaland. Initiation of the Upper Jurassic rift complex occurred during late Callovian early Oxfordian associated with the development of a northeast-southwest trending spreading centre on the Argo Abyssal Plain. The spreading centre propagated southwards during the Late Jurassic. This resulted in active rifting in the Barrow Sub-basin and ultimately led to the separation of the Indian and Australian plates during Valanginian time.Upper Jurassic synrift sediments in the eastern Barrow Sub-basin consist of detached basin floor fan complexes, channelised and canyon fed fan systems, slump deposits, prograding outer shelfal to slope deposits and deep marine claystones. Post-depositional uplift of the eastern shelfal areas during the Late Jurassic resulted in erosion of the transgressive and highstand fluvial-deltaic to shelfal deposits. These periods of uplift and erosion provided much of the sediment redeposited in the basinal areas during the lowstand periods. Seven sandstone facies were recognised in the Upper Jurassic sedimentary section based on core control. Each sandstone has unique reservoir characteristics which can be related to the depositional setting. / The abundance of glauconite and belemnites combined with ichnology and biostratigraphic assemblages associated with marine environments, indicate that deposition of all the sandstone facies occurred within an outer shelfal - deep marine environment. Reservoir quality was best developed in the dominantly medium grained, moderate - well sorted sandstones, (facies 7), which were deposited as detached, basin floor submarine fan sands or interbedded turbidites. In contrast, reservoir quality was relatively poorly developed in the remaining facies which were deposited as slope fans, slumps, or distal turbidite deposits.The abundance of quartz and presence of banded iron, jasper, and potassic feldspar grains support the provenance for the basinal sandstone facies being the Precambrian alkyl granites and banded iron formation of.the Pilbara Shield and Hammersley Ranges. These Precambrian igneous rocks and metasediments mark the eastern boundary of the Barrow Sub-basin study area. To predict the distribution of sedimentary facies in the Upper Jurassic synrift sediments of the eastern Barrow Sub-basin, the interplay between the major controlling depositional processes, namely tectonics, sediment supply and eustasy must be understood. Subdivision of the synrift sedimentary section on the basis of lithostratigraphy can be misleading and does not adequately resolve the facies relationships observed in the well intersection. The results of this research form the basis for a regional sequence analysis and seismic stratigraphic study.
44

A Study of a Plunging Jet Bubble Column

Evans, Geoffrey Michael January 1990 (has links)
The hydrodynamic phenomena occurring inside the enclosed downcomer section of a plunging jet bubble column are described in the study. The gas entrainment rate for a plunging liquid jet was found to consist of two components, namely the gas trapped within the effective jet diameter at the point of impact, and the gas contained within the film between the jet and induction trumpet surface at the point of rupture. Entrainment within the effective jet diameter has been examined by McCarthy (1972). In this study, a model was supported by the experimental results, provided the film attained a region of constant thickness. When the induction trumpet was ruptured prior to a constant film thickness being reached, the measured rate of filmwise entrainment was higher than the prediction. Filmwise entrainment was found to be initiated once a critical velocity along the surface of the induction trumpet was reached. The critical velocity was a function only of the liquid physical properties and was independent of the jet conditions and downcomer diameter. The velocity of the free surface of the induction trumpet was obtained from the velocity profile for the recirculating eddy generated by the confined plunging liquid jet. The jet angle used to describe the expansion of the submerged jet inside the downcomer was predicted from the radial diffusion of jet momentum into the recirculation eddy. The model was able to predict the jet angle when it was assumed that the radial diffusion of jet momentum was a function of the Euler number based on the jet velocity and absolute pressure in the headspace at the top of the downcomer. The model was also developed to predict the maximum stable bubble diameter generated within the submerged jet volume, where the energy dissipation attributed to bubble breakup was given by the energy mixing loss derived for the throat section of a liquid-jet-gas-pump. Good agreement was found between the measured and predicted maximum bubble diameter values. The average experimental Sauter mean/maximum diameter ratio was found to be 0.61, which was similar to that for other bubble generation devices. It was found that for turbulent liquid conditions in the uniform two-phase flow region, a transition from bubble to churn-turbulent flow occurred at a gas void fraction of approximately 0.2 when the gas drift-flux was zero. Under laminar liquid flow, this transition took place at a gas void fraction above 0.3. For the bubbly flow regime the Distribution parameter Co used by Zuber and Findlay (1965) to describe the velocity and gas void fraction profile, was found to be a function of the liquid Reynolds number. For laminar liquid flow, values of Co greater than unity were obtained. As the liquid Reynolds number was increased it was found that Co decreased, until a constant value of unity was obtained for fully turbulent flow. For the churn-turbulent regime it was found that the gas void fraction measurements for all of the experimental runs could be collapsed onto a single curve when a modified gas void fraction was plotted against the gas-to-liquid volumetric flow ratio. The modified gas void fraction included a correction factor to account for the difference in the bubble slip velocity between the experimental runs. The experimental results also indicated that the value of the constant in the gas void fraction correction factor was different for laminar and turbulent flow. Prior to bubble coalescence, it was found that the experimental drift-flux curves could be predicted from the measured bubble diameter, using the separated flow model development by Ishii and Zuber (1979). After the onset of coalescence the drift flux measurements departed from the original drift-flux curves at a rate which increased linearly with increasing gas void fraction. It was found that the slope of the line fitted to the coalesced region of the drift-flux curves increased with increasing liquid Reynolds number and reached a constant value under fully turbulent flow conditions. The model developed, together with the implications of the experimental results, are discussed with regard to optimising the design of an industrial plunging jet bubble column. / PhD Doctorate
45

Entwicklung und Validierung von Modellen für Blasenkoaleszenz und -zerfall

Liao, Y., Lucas, D. 22 May 2013 (has links) (PDF)
Ein neues, verallgemeinertes Modell für Blasenkoaleszenz und –zerfall wurde entwickelt. Es basiert auf physikalischen Überlegungen und berücksichtigt verschiedene Mechanismen, die zu Blasenkoaleszenz und –zerfall führen können. In einer ausführlichen Literaturrecherche wurden zunächst die verfügbaren Modelle zusammengestellt und analysiert. Es zeigte sich, dass viele widersprüchliche Modelle veröffentlicht wurden. Keins dieser Modelle erlaubt die Vorhersage der Entwicklung der Blasengrößenverteilungen entlang einer Rohrströmung für einen breiten Bereich an Kombinationen von Volumenströmen der Gas- und der Flüssigphase. Das neue Modell wurde ausführlich in einem vereinfachten Testsolver untersucht. Dieser erfasst zwar nicht alle Einzelheiten einer sich entlang des Rohres entwickelten Strömungen, erlaubt aber im Gegensatz zu den CFD-Simulationen eine Vielzahl von Variationsrechnungen zur Untersuchung des Einflusses einzelner Größen und Modelle. Koaleszenz und Zerfall kann nicht getrennt von anderen Phänomenen und Modellen, die diese widerspiegeln, betrachtet werden. Es bestehen enge Wechselwirkungen mit der Turbulenz der Flüssigphase und dem Impulsaustausch zwischen den Phasen. Da die Dissipationsrate der turbulenten kinetischen Energie ein direkter Eingangsparameter für das neue Modell ist, wurde die Turbulenzmodellierung besonders genau untersucht. Zur Validierung des Modells wurde eine TOPFLOW-Experimentalserie zur Luft-Wasser-Strömungen in einem 8 m langen DN200-Rohr genutzt. Die Daten zeichnen sich durch eine hohe Qualität aus und wurden im Rahmen des TOPFLOW-IIVorhabens mit dem Ziel eine Grundlage für die hier vorgestellten Arbeiten zu liefern, gewonnen. Die Vorhersage der Entwicklung der Blasengrößenverteilung entlang des Rohrs konnte im Vergleich zu den bisherigen Standardmodellen für Blasenkoaleszenz und -zerfall in CFX deutlich verbessert werden. Einige quantitative Abweichungen bleiben aber bestehen. Die vollständigen Modellgleichungen sowie eine Implementierung über „User-FORTRAN“ in CFX stehen zur Verfügung und können für weitere Arbeiten zur Simulation polydisperser Blasenströmungen genutzt werden.
46

Bubble Dynamics, Oscillations and Breakup under Forced Vibration

Movassat, Mohammad 30 August 2012 (has links)
Coupled shape oscillations and translational motion of an incompressible gas bubble in a liquid container in response to forced vibration is studied numerically. Bond number (Bo) and the ratio of the vibration amplitude to the bubble diameter (A/D) are found to be the governing non-dimensional numbers. Bubble response is studied in both 2D and 3D. Different schemes are used for 2D and 3D simulations. In 2D, the flow solver is coupled to a Volume of Fluid (VOF) algorithm to capture the interface between the two phases while in 3D the interface is captured using a level set algorithm. The oscillation outcome ranges from small amplitude and regular oscillations for small Bo and A/D to large amplitude, nonlinear, and chaotic oscillations for large Bo and A/D. Chaotic behavior occurs due to the coupling between the nonlinear shape oscillations and large amplitude oscillatory translational motion. By further increase of the forcing, the inertia of the liquid results in the formation of a liquid jet which penetrates within the bubble core and pierces the bubble and a toroidal bubble shape is formed. The toroidal bubble shape then goes through large amplitude shape oscillations and smaller bubbles are formed. A summary of the 3D simulations provides a map which shows the bubble oscillation outcome as a function of Bo and A/D. The interaction between two bubbles is studied in 2D as well and the effect of vibration amplitude, frequency and liquid to gas density ratio on the interaction force is investigated.
47

Bubble Dynamics, Oscillations and Breakup under Forced Vibration

Movassat, Mohammad 30 August 2012 (has links)
Coupled shape oscillations and translational motion of an incompressible gas bubble in a liquid container in response to forced vibration is studied numerically. Bond number (Bo) and the ratio of the vibration amplitude to the bubble diameter (A/D) are found to be the governing non-dimensional numbers. Bubble response is studied in both 2D and 3D. Different schemes are used for 2D and 3D simulations. In 2D, the flow solver is coupled to a Volume of Fluid (VOF) algorithm to capture the interface between the two phases while in 3D the interface is captured using a level set algorithm. The oscillation outcome ranges from small amplitude and regular oscillations for small Bo and A/D to large amplitude, nonlinear, and chaotic oscillations for large Bo and A/D. Chaotic behavior occurs due to the coupling between the nonlinear shape oscillations and large amplitude oscillatory translational motion. By further increase of the forcing, the inertia of the liquid results in the formation of a liquid jet which penetrates within the bubble core and pierces the bubble and a toroidal bubble shape is formed. The toroidal bubble shape then goes through large amplitude shape oscillations and smaller bubbles are formed. A summary of the 3D simulations provides a map which shows the bubble oscillation outcome as a function of Bo and A/D. The interaction between two bubbles is studied in 2D as well and the effect of vibration amplitude, frequency and liquid to gas density ratio on the interaction force is investigated.
48

Modeling And Simulation Of Shaped Charges

Gurel, Eser 01 June 2009 (has links) (PDF)
Shaped charges are explosive devices with a high penetration capability and are used for both civilian and military purposes. In civilian applications shaped charge devices are used in demolition works, oil drilling and mining. In the military applications, shaped charges are used against different kinds of armors, primarily as anti-tank devices. This thesis work involves the modeling and simulation of shaped charge devices, with the focus being on anti-tank warhead design. Both numerical simulation and analytical calculation methods are used to predict shaped charge performance / in the aspects of jet formation, breakup and penetration. The results are compared within themselves and with the data available in the literature. AUTODYN software is used for the numerical simulations. Different solver and modeling alternatives of AUTODYN are evaluated for jet formation and penetration problems. AUTODYN&rsquo / s Euler solver is used to understand how the jet formation is affected by the mesh size and shape and the presence of air as the surrounding medium. Jetting option in the AUTODYN-Euler simulations are used to simulate jet formation as an alternative to simulations performed using AUTODYN&rsquo / s Euler solver. In the jetting option liner elements are modeled as Lagrangian shell elements, rather than Eulerian elements. Analytical codes are written to study the jet formation, breakup and penetration processes. Many alternative formulas that can be used in the analytical calculations are listed and discussed. Parameters of these formulas are varied to investigate their effects on the results. Necessary constants for the analytical formulas are obtained using the results of AUTODYN simulations.
49

Adjustment To Breakup Of Romantic Relationships: Initiator Status, Certainity About The Reasons Of Breakup, Current Relationship Status And Perceived Social Support

Barutcu, Kadriye Funda 01 September 2009 (has links) (PDF)
The main purpose of the present study was to examine the possible factors that affect the adjustment to breakup of romantic relationships. Initiator status, certainty about the reasons of breakup, current relationship status, and perceived social support were examined in regard to adjustment to breakup. The sample of the study consisted of 397 participants (192 (48.4%) female, 205 (51.6%) male). At the beginning, the invited sample consisted of 561 (276 female, 285 male) participants / 164 of the participants who had not broken off their romantic relationship within the past two years were excluded. Data collection instruments of the study were demographic information form, Multidimensional Scale of Perceived Social Support, and Fisher&rsquo / s Divorce Adjustment Scale. One-way ANOVA and post-hoc test were conducted to determine the differences among initiator groups in terms of adjustment to breakup.Results showed that there were significant differences between the initiator and non-initiator groups and also between non-initiator and mutual decider groups. There wasn&rsquo / t significant difference between the initiator and the mutual decider groups. The results of t-tests showed that there was a significant difference between the groups who were certain about the reasons of breakup and those who were not in regard to adjustment to breakup. There was also significant difference between the groups who had another romantic relationship after the breakup and those who did not have regarding the adjustment to breakup. Besides these, bivariate correlation analysis indicated a significant relationship between perceived social support and adjustment to breakup.
50

Modelling of Liquid Breakup Mechanisms in Engineering Systems

Diemuodeke, Ogheneruona Endurance 09 1900 (has links)
Effective design of liquid fuel injection systems is a function of good understanding of liquid breakup mechanisms. A transient liquid breakup model is developed on the classical interfacial breakup theory by modifying the classical linear perturbation process to include time-dependent base and perturbed flow parameters. The non-isothermal condition on liquid jet instability and breakup is theoretically modelled; with the particular consideration of a spatially variation of surface tension along the liquid-gas interface. The model combines the classical interface hydrodynamic instability and breakup theory and heat-transfer through semi-infinite medium. Analytical liquid breakup model, which combines transient and non-isothermal effects on liquid jet breakup, is suggested. The suggested model could be simplified to the transient breakup model and the non-isothermal breakup model equivalents. A novel mechanistic model, which is based on a simple momentum balance between the injected jet and the aerodynamic drag force, is suggested for breakup length. A new model, which combines energy criterion and dual-timescale for turbulent shear in droplet dispersion, is suggested for droplet breakup criteria on the basis of critical Webber number. All developed models showed good predictions of available experimental data, and established empirical correlation, within the operational conditions of contemporary ICEs, specifically diesel engines. Continued research in these areas could benefit the development of the next generation of liquid fuel injectors and combustors – by accounting for transient effects and non-isothermal conditions in liquid jet breakup, and turbulent shear in droplet breakup.

Page generated in 0.0244 seconds