• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 13
  • 8
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 25
  • 23
  • 19
  • 18
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

A Morphological Technique For Direct Drop Size Measurement Of Cryogenic Sprays

Ganu, Hrishikesh Vidyadhar 10 1900 (has links) (PDF)
No description available.
82

Entwicklung und Validierung von Modellen für Blasenkoaleszenz und -zerfall

Liao, Y., Lucas, D. January 2013 (has links)
Ein neues, verallgemeinertes Modell für Blasenkoaleszenz und –zerfall wurde entwickelt. Es basiert auf physikalischen Überlegungen und berücksichtigt verschiedene Mechanismen, die zu Blasenkoaleszenz und –zerfall führen können. In einer ausführlichen Literaturrecherche wurden zunächst die verfügbaren Modelle zusammengestellt und analysiert. Es zeigte sich, dass viele widersprüchliche Modelle veröffentlicht wurden. Keins dieser Modelle erlaubt die Vorhersage der Entwicklung der Blasengrößenverteilungen entlang einer Rohrströmung für einen breiten Bereich an Kombinationen von Volumenströmen der Gas- und der Flüssigphase. Das neue Modell wurde ausführlich in einem vereinfachten Testsolver untersucht. Dieser erfasst zwar nicht alle Einzelheiten einer sich entlang des Rohres entwickelten Strömungen, erlaubt aber im Gegensatz zu den CFD-Simulationen eine Vielzahl von Variationsrechnungen zur Untersuchung des Einflusses einzelner Größen und Modelle. Koaleszenz und Zerfall kann nicht getrennt von anderen Phänomenen und Modellen, die diese widerspiegeln, betrachtet werden. Es bestehen enge Wechselwirkungen mit der Turbulenz der Flüssigphase und dem Impulsaustausch zwischen den Phasen. Da die Dissipationsrate der turbulenten kinetischen Energie ein direkter Eingangsparameter für das neue Modell ist, wurde die Turbulenzmodellierung besonders genau untersucht. Zur Validierung des Modells wurde eine TOPFLOW-Experimentalserie zur Luft-Wasser-Strömungen in einem 8 m langen DN200-Rohr genutzt. Die Daten zeichnen sich durch eine hohe Qualität aus und wurden im Rahmen des TOPFLOW-IIVorhabens mit dem Ziel eine Grundlage für die hier vorgestellten Arbeiten zu liefern, gewonnen. Die Vorhersage der Entwicklung der Blasengrößenverteilung entlang des Rohrs konnte im Vergleich zu den bisherigen Standardmodellen für Blasenkoaleszenz und -zerfall in CFX deutlich verbessert werden. Einige quantitative Abweichungen bleiben aber bestehen. Die vollständigen Modellgleichungen sowie eine Implementierung über „User-FORTRAN“ in CFX stehen zur Verfügung und können für weitere Arbeiten zur Simulation polydisperser Blasenströmungen genutzt werden.
83

Study of the eikonal approximation to model exotic reactions

Hebborn, Chloë 08 September 2020 (has links) (PDF)
In the mid-eighties, the development of radioactive-ion beams enabled the exploration ofregions of the nuclear landscape away from the valley of stability. Close to the neutrondripline, in the light neutron-rich region, halo nuclei were observed. These nuclei exhibit asurprisingly large matter radius and a strongly clusterized structure. These two featurescan be explained by the weak binding of one or two neutrons which allows them to tunnelfar from the rest of the nucleons, surrounding the nucleus by a diffuse halo. These nuclearstructures have challenged the usual description of the nucleus, described as a compactmany-body object with nucleons piling up into well defined orbitals. Because they areshort-lived, these nuclei are often studied through reaction processes, such as elasticscattering, breakup and knockout. To infer precise information from the experimentaldata, an accurate reaction model coupled with a realistic description of the nucleus isneeded.Compared to other state-of-the-art methods, the eikonal approximation is very cheapfrom a computational viewpoint. This model assumes that the projectile-target relativemotion does not differ much from the initial plane wave. It also makes the adiabaticapproximation, which sees the internal coordinates of the projectile as frozen during thecollision. These two assumptions hold for reactions occurring at high energy, i.e. above60 MeV/nucleon, in which the deflection of the projectile by the target is small and thecollision time is brief.In this thesis, I focus on improvements of the eikonal approximation. First, I studythe extension of the validity of the eikonal model down to 10 MeV/nucleon, in the energyrange of the facilities HIE-ISOLDE at CERN and ReA12 at the upcoming FRIB. To thisend, I analyse different corrections to the eikonal approximation, which account for thedeflection of the projectile by the target. I assess their accuracy for the elastic-scatteringand breakup observables of one-neutron halo nuclei at 10 MeV/nucleon. Next, I developa dynamical correction to the eikonal approximation, which applies to both nuclear andCoulomb interactions while conserving the eikonal numerical cost. I study this correctionin the cases of breakup reactions of one-neutron halo nuclei on light and heavy targets.Then, I investigate which nuclear-structure information can be inferred from knockoutreactions of one-neutron halo nuclei. To do so, I conduct a sensitivity analysis of theirobservables to the nuclear structure of the projectile, described within a halo effectivefield theory. In particular, I study the influence onto the cross sections of the ground-statewave function, the presence of subthreshold bound states and resonances. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
84

Characterization and Prediction of Water Droplet Size in Oil-Water Flow

Yao, Juncheng 23 September 2016 (has links)
No description available.
85

Dating violence and the stay/leave decisions of young women in college

Lyon, Sarah Elizabeth January 1900 (has links)
Doctor of Philosophy / Department of Family Studies and Human Services / Sandra M. Stith and Amber Vennum / Ending a college dating relationship is common as college coeds begin trying on romantic relationships for size. Ending the relationship because the relationship has become violent can add more complexities to an already unpleasant task. This study was an attempt to better understand the stay/leave decisions for college women who were victims of dating violence and whether or not these decisions differed for college women who were involved in violent versus non-violent dating relationships. Structural equation modeling was used to explore the factors that influenced the likelihood of female college students’ dating relationships to end using Choice and Lamke’s (1999) two-part decision-making model. In summary, victims reported greater relationship distress, less attraction towards someone other than their partner, less relationship safety, lower relationship efficacy, less social support, and fewer good friends than non-victims. Results also indicated that college women’s consideration of “Will I be better off?” was more important in the decision to leave a dating relationship than their perception of “Can I do it?” In addition, results from Multiple Indicators Multiple Causes (MIMIC) modeling found that, while victims believed they were more likely to be better off leaving their violent, dating partners, they felt less able to actually leave the relationship than their non-victim counterparts. MIMIC modeling also found that being a victim or not of dating violence did not predict breakup directly. These findings have important implications for prevention and treatment of dating violence and can be used to further the research in the area of dating violence, college students, and stay/leave decisions.
86

INKJET PRINTING: FACING CHALLENGES AND ITS NEW APPLICATIONS IN COATING INDUSTRY

Poozesh, Sadegh 01 January 2015 (has links)
This study is devoted to some of the most important issues for advancing inkjet printing for possible application in the coating industry with a focus on piezoelectric droplet on demand (DOD) inkjet technology. Current problems, as embodied in liquid filament breakup along with satellite droplet formation and reduction in droplet sizes, are discussed and then potential solutions identified. For satellite droplets, it is shown that liquid filament break-up behavior can be predicted by using a combination of two pi-numbers, including the Weber number, We and the Ohnesorge number, Oh, or the Reynolds number, Re, and the Weber number, We. All of these are dependent only on the ejected liquid properties and the velocity waveform at the print-head inlet. These new criteria are shown to have merit in comparison to currently used criteria for identifying filament physical features such as length and diameter that control the formation of subsequent droplets. In addition, this study performs scaling analyses for the design and operation of inkjet printing heads. Because droplet sizes from inkjet nozzles are typically on the order of nozzle dimensions, a numerical simulation is carried out to provide insight into how to reduce droplet sizes by employing a novel input waveform impressed on the print-head liquid inflow without changing the nozzle geometry. A regime map for characterizing the generation of small droplets based on We and a non-dimensional frequency, Ω is proposed and discussed. In an attempt to advance inkjet printing technology for coating purposes, a prototype was designed and then tested numerically. The numerical simulation successfully proved that the proposed prototype could be useful for coating purposes by repeatedly producing mono-dispersed droplets with controllable size and spacing. Finally, the influences of two independent piezoelectric characteristics - the maximum head displacement and corresponding frequency, was investigated to examine the quality of filament breakup quality and favorable piezoelectric displacements and frequencies were identified.
87

Experimental Investigation of Superheated Liquid Jet Atomization due to Flashing Phenomena

Yildiz, Dilek 19 September 2005 (has links)
The present research is an experimental investigation of the atomization of a superheated pressurized liquid jet that is exposed to the ambient pressure due to a sudden depressurization. This phenomena is called flashing and occurs in several industrial environments. Liquid flashing phenomena holds an interest in many areas of science and engineering. Typical examples one can mention: a) the accidental release of flammable and toxic pressure-liquefied gases in chemical and nuclear industry; the failure of a vessel or pipe in the form of a small hole results in the formation of a two-phase jet containing a mixture of liquid droplets and vapor, b) atomisation improvement in the fuel injector technology, c) flashing mechanism occurrence in expansion devices of refrigerator cycles etc... The interest in flashing events is especially true in the safety field where any unexpected event is undesirable. In case of an accident, flammable or toxic gas clouds are anticipated in close regions of the release because of the sudden phase change . Due to the non-equilibrium nature of the flow in these near field regions, conducting accurate data measurements for droplet size and velocity is a challenging task resulting in scarce data in the very close area. This research has been carried out at the von Karman Institute (VKI) within the 5th framework of European Commission to fulfill the goal of understanding of source processes in flashing liquids in accidental releases. The program is carried out under name of FLIE (Flashing Liquids in Industrial Environments)(Contract no: EVG1-CT-2000-00025). The specific issues that are presented in this thesis study are the following:a) a comprehensive state of art of the jet break up patterns, spray characteristics and studies related to flashing phenomena; b)flashing jet breakup patterns and accurate characterization of the atomized jet such as droplet diameter size, velocity and temperature evolution through carefully designed laboratory-scale experiments; c) the influence of the initial storage conditions on the final atomized jet; d) a physical model on the droplet transformation and rapid evaporation in aerosol jets. In order to characterize the atomization of the superheated liquid jet, laser-based optical techniques like Particle Image Velocimetry (PIV), Phase Doppler Anemometry (PDA) are used to obtain information for particle diameter and velocity evolution at various axial and radial distances. Moreover, a high-speed video photography presents the possibility to understand the break-up pattern changes of the simulating liquid namely R-134A jet in function of driving pressure, superheat and discharge nozzle characteristics. Global temperature measurements with an intrusive technique such as thermocouples, non-intrusive measurements with Infrared Thermography are performed. Cases for different initial pressures, temperatures, orifice diameters and length-to-diameter ratios are studied. The break-up patterns, the evolution of the mean droplet size, velocity, RMS, turbulence intensity and temperature along the radial and axial directions are presented in function of initial parameters. Highly populated drop size and velocity count distributions are provided. Among the initial storage conditions, superheat effect is found to be very important in providing small droplets. A 1-D analytical rapid evaporation model is developed in order to explain the strong temperature decrease during the measurements. A sensitivity analysis of this model is provided.
88

Investigation of resonance phenomena in the '1'6O+'1'6O system

Dillon, Graham Keith January 1999 (has links)
No description available.
89

Social cognition as mediator of romantic breakup adjustment in young adults who experienced childhood maltreatment

Francoeur, Audrey 08 1900 (has links)
No description available.
90

NEW PERSPECTIVES FOR ANALYZING THE BREAKUP, ENVIRONMENT, EVOLUTION, COLLISION RISK AND REENTRY OF SPACE DEBRIS OBJECTS

Anilkumar, A K 02 1900 (has links)
Vikram Sarabhai Space Centre,Trivandrum / In the space surrounding the earth there are two major regions where orbital debris causes concern. They are the Low Earth Orbits (LEO) up to about 2000 km, and Geosynchronous Orbits (GEO) at an altitude of around 36000 km. The impact of the debris accumulations are in principle the same in the two regions; nevertheless they require different approaches and solutions, due to the fact that the perturbations in the orbital decay due to atmospheric drag effects predominates in LEO, gravitational forces including earth’s oblateness and luni solar effects dominating in GEO are different in these two regions. In LEO it is generally known that the debris population dominates even the natural meteoroid population for object sizes 1 mm and larger. This thesis focuses the study mainly in the LEO region. Since the first satellite breakup in 1961 up to 01 January 2003 more than 180 spacecraft and rocket bodies have been known to fragment in orbit. The resulting debris fragments constitute nearly 40% of the 9000 or more of the presently tracked and catalogued objects by USSPACECOM. The catalogued fragment count does not include the much more numerous fragments, which are too small to be detected from ground. Hence in order to describe the trackable orbital debris environment, it is important to develop mathematical models to simulate the trackable fragments and later expand it to untrackable objects. Apart from the need to better characterize the orbital debris environment down to sub millimeter particles, there is also a pressing necessity of simulation tools able to model in a realistic way the long term evolution of space debris, to highlight areas, which require further investigations, and to study the actual mitigation effects of space policy measures. The present thesis has provided newer perspectives for five major issues in space debris modeling studies. The issues are (i) breakup modeling, (ii) environment modeling, (iii) evolution of the debris environment, (iv) collision probability analysis and (v) reentry prediction. The Chapter 1 briefly describes an overview of space debris environment and the issues associated with the growing space debris populations. A literature survey of important earlier work carried out regarding the above mentioned five issues are provided in the Chapter 2. The new contributions of the thesis commence from Chapter 3. The Chapter 3 proposes a new breakup model to simulate the creation of debris objects by explosion in LEO named “A Semi Stochastic Environment Modeling for Breakup in LEO” (ASSEMBLE). This model is based on a study of the characteristics of the fragments from on orbit breakups as provided in the TLE sets for the INDIAN PSLV-TES mission spent upper stage breakup. It turned out that based on the physical mechanisms in the breakup process the apogee, perigee heights (limited by the breakup altitude) closely fit suitable Laplace distributions and the eccentricity follows a lognormal distribution. The location parameters of these depend on the orbit of the parent body at the time of breakup and their scale parameters on the intensity of explosion. The distribution of the ballistic coefficient in the catalogue was also found to follow a lognormal distribution. These observations were used to arrive at the proper physical, aerodynamic, and orbital characteristics of the fragments. Subsequently it has been applied as an inverse problem to simulate and further validate it based on some more typical well known historical on orbit fragmentation events. All the simulated results compare quite well with the observations both at the time of breakup and at a later epoch. This model is called semi stochastic in nature since the size and mass characteristics have to be obtained from empirical relations and is capable of simulating the complete scenario of the breakup. A new stochastic environment model of the debris scenario in LEO that is simple and impressionistic in nature named SIMPLE is proposed in Chapter 4. Firstly among the orbital debris, the distribution of the orbital elements namely altitude, perigee height, eccentricity and the ballistic coefficient values for TLE sets of data in each of the years were analyzed to arrive at their characteristic probability distributions. It is observed that the altitude distribution for the number of fragments exhibits peaks and it turned out that such a feature can be best modeled with a tertiary mixture of Laplace distributions with eight parameters. It was noticed that no statistically significant variations could be observed for the parameters across the years. Hence it is concluded that the probability density function of the altitude distribution of the debris objects has some kind of equilibrium and it follows a three component mixture of Laplace distributions. For the eccentricity ‘e’ and the ballistic parameter ‘B’ values the present analysis showed that they could be acceptably quite well fitted by Lognormal distributions with two parameters. In the case of eccentricity also the describing parameter values do not vary much across the years. But for the parameters of the B distribution there is some trend across the years which perhaps may be attributed to causes such as decay effect, miniaturization of space systems and even the uncertainty in the measurement data of B. However in the absence of definitive cause that can be attributed for the variation across the years, it turns out to be best to have the most recent value as the model value. Lastly the same kind of analysis has also been carried out with respect to the various inclination bands. Here the orbital parameters are analyzed with respect to the inclination bands as is done in ORDEM (Kessler et al 1997, Liou et al 2001) for near circular orbits in LEO. The five inclination bands considered here are 0-36 deg (in ORDEM they consider 19-36 deg, and did not consider 0-19 deg), 36-61 deg, 61-73 deg, 73-91 deg and 91- 180 deg, and corresponding to each band, the altitude, eccentricity and B values were modeled. It is found that the third band shows the models with single Laplace distribution for altitude and Lognormal for eccentricity and B fit quite well. The altitude of other bands is modeled using tertiary mixture of Laplace distributions, with the ‘e’ and ‘B’ following once again a Lognormal distribution. The number of parameter values in SIMPLE is, in general, just 8 for each description of altitude or perigee distributions whereas in ORDEM96 it is more. The present SIMPLE model captures closely all the peak densities without losing the accuracy at other altitudes. The Chapter 5 treats the evolution of the debris objects generated by on orbit breakup. A novel innovative approach based on the propagation of an equivalent fragment in a three dimensional bin of semi major axis, eccentricity, and the ballistic coefficient (a, e, B) together with a constant gain Kalman filter technique is described in this chapter. This new approach propagates the number density in a bin of ‘a’ and ‘e’ rapidly and accurately without propagating each and every of the space debris objects in the above bin. It is able to assimilate the information from other breakups as well with the passage of time. Further this approach expands the scenario to provide suitable equivalent ballistic coefficient values for the conglomeration of the fragments in the various bins. The heart of the technique is to use a constant Kalman gain filter, which is optimal to track the dynamically evolving fragment scenario and further expand the scenario to provide time varying equivalent ballistic coefficients for the various bins. In the next chapter 6 a new approach for the collision probability assessment utilizing the closed form solution of Wiesel (1989) by the way of a three dimensional look up table, which takes only air drag effect and an exponential model of the atmosphere, is presented. This approach can serve as a reference collision probability assessment tool for LEO debris cloud environment. This approach takes into account the dynamical behavior of the debris objects propagation and the model utilizes a simple propagation for quick assessment of collision probability. This chapter also brings out a comparison of presently available collision probability assessment algorithms based on their complexities, application areas and sample space on which they operate. Further the quantitative assessment of the collision probability estimates between different presently available methods is carried out and the obtained collision probabilities are match qualitatively. The Chapter 7 utilizes once again the efficient and robust constant Kalman gain filter approach that is able to handle the many uncertain, variable, and complex features existing in the scenario to predict the reentry time of the risk objects. The constant gain obtained by using only a simple orbit propagator by considering drag alone is capable of handling the other modeling errors in a real life situation. A detailed validation of the approach was carried out based on a few recently reentered objects and comparison of the results with the predictions of other agencies during IADC reentry campaigns are also presented. The final Chapter 8 provides the conclusions based on the present work carried together with suggestions for future efforts needed in the study of space debris. Also the application of the techniques evolved in the present work to other areas such as atmospheric data assimilation and forecasting have also been suggested.

Page generated in 0.0838 seconds