Spelling suggestions: "subject:"highschool imaging""
1 |
Experimental Investigation of Superheated Liquid Jet Atomization due to Flashing PhenomenaYildiz, Dilek 19 September 2005 (has links)
The present research is an experimental investigation of the atomization of a superheated pressurized liquid jet that is exposed to the ambient pressure due to a sudden depressurization. This phenomena is called flashing and occurs in several industrial environments.
Liquid flashing phenomena holds an interest in many areas of science and engineering. Typical examples one can mention: a) the accidental release of flammable and toxic pressure-liquefied gases in chemical and nuclear industry; the failure of a vessel or pipe in the form of a small hole results in the formation of a two-phase jet containing a mixture of liquid droplets and vapor, b) atomisation improvement in the fuel injector technology, c) flashing mechanism occurrence in expansion devices of refrigerator cycles etc... The interest in flashing events is especially true in the safety field where any unexpected event is undesirable. In case of an accident, flammable or toxic gas clouds are anticipated in close regions of the release because of the sudden phase change . Due to the non-equilibrium nature of the flow in these near field regions, conducting accurate data measurements for droplet size and velocity is a challenging task resulting in scarce data in the very close area.
This research has been carried out at the von Karman Institute (VKI) within the 5th framework of European Commission to fulfill the goal of understanding of source processes in flashing liquids in accidental releases. The program is carried out under name of FLIE (Flashing Liquids in Industrial Environments)(Contract no: EVG1-CT-2000-00025). The specific issues that are presented in this thesis study are the following:a) a comprehensive state of art of the jet break up patterns, spray characteristics and studies related to flashing phenomena; b)flashing jet breakup patterns and accurate characterization of the atomized jet such as droplet diameter size, velocity and temperature evolution through carefully designed laboratory-scale experiments; c) the influence of the initial storage conditions on the final atomized jet; d) a physical model on the droplet transformation and rapid evaporation in aerosol jets.
In order to characterize the atomization of the superheated liquid jet, laser-based optical techniques like Particle Image Velocimetry (PIV), Phase Doppler Anemometry (PDA) are used to obtain information for particle diameter and velocity evolution at various axial and radial distances. Moreover, a high-speed video photography presents the possibility to understand the break-up pattern changes of the simulating liquid namely R-134A jet in function of driving pressure, superheat and discharge nozzle characteristics. Global temperature measurements with an intrusive technique such as thermocouples, non-intrusive measurements with Infrared Thermography are performed. Cases for different initial pressures, temperatures, orifice diameters and length-to-diameter ratios are studied. The break-up patterns, the evolution of the mean droplet size, velocity, RMS, turbulence
intensity and temperature along the radial and axial directions are presented in function of initial parameters. Highly populated drop size and velocity count distributions are provided. Among the initial storage conditions, superheat effect is found to be very important in providing small droplets. A 1-D analytical rapid evaporation model is developed in order to explain the strong temperature decrease during the measurements. A sensitivity analysis of this model is provided.
|
2 |
Experimental Investigation of superheated liquid jet atomization due to flashing phenomenaYildiz, Dilek 19 September 2005 (has links)
The present research is an experimental investigation of the atomization of a superheated pressurized liquid jet that is exposed to the ambient pressure due to a sudden depressurization. This phenomena is called flashing and occurs in several industrial environments.<p><p>Liquid flashing phenomena holds an interest in many areas of science and engineering. Typical examples one can mention: a) the accidental release of flammable and toxic pressure-liquefied gases in chemical and nuclear industry; the failure of a vessel or pipe in the form of a small hole results in the formation of a two-phase jet containing a mixture of liquid droplets and vapor, b) atomisation improvement in the fuel injector technology, c) flashing mechanism occurrence in expansion devices of refrigerator cycles etc. The interest in flashing events is especially true in the safety field where any unexpected event is undesirable. In case of an accident, flammable or toxic gas clouds are anticipated in close regions of the release because of the sudden phase change .Due to the non-equilibrium nature of the flow in these near field regions, conducting accurate data measurements for droplet size and velocity is a challenging task resulting in scarce data in the very close area.<p><p>This research has been carried out at the von Karman Institute (VKI) within the 5th framework of European Commission to fulfill the goal of understanding of source processes in flashing liquids in accidental releases. The program is carried out under name of FLIE (Flashing Liquids in Industrial Environments)(Contract no: EVG1-CT-2000-00025). The specific issues that are presented in this thesis study are the following:a) a comprehensive state of art of the jet break up patterns, spray characteristics and studies related to flashing phenomena; b)flashing jet breakup patterns and accurate characterization of the atomized jet such as droplet diameter size, velocity and temperature evolution through carefully designed laboratory-scale experiments; c) the influence of the initial storage conditions on the final atomized jet; d) a physical model on the droplet transformation and rapid evaporation in aerosol jets.<p><p>In order to characterize the atomization of the superheated liquid jet, laser-based optical techniques like Particle Image Velocimetry (PIV), Phase Doppler Anemometry (PDA) are used to obtain information for particle diameter and velocity evolution at various axial and radial distances. Moreover, a high-speed video photography presents the possibility to understand the break-up pattern changes of the simulating liquid namely R-134A jet in function of driving pressure, superheat and discharge nozzle characteristics. Global temperature measurements with an intrusive technique such as thermocouples, non-intrusive measurements with Infrared Thermography are performed. Cases for different initial pressures, temperatures, orifice diameters and length-to-diameter ratios are studied. The break-up patterns, the evolution of the mean droplet size, velocity, RMS, turbulence<p>intensity and temperature along the radial and axial directions are presented in function of initial parameters. Highly populated drop size and velocity count distributions are provided. Among the initial storage conditions, superheat effect is found to be very important in providing small droplets. A 1-D analytical rapid evaporation model is developed in order to explain the strong temperature decrease during the measurements. A sensitivity analysis of this model is provided.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0682 seconds