• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Morphological Technique For Direct Drop Size Measurement Of Cryogenic Sprays

Ganu, Hrishikesh Vidyadhar 10 1900 (has links) (PDF)
No description available.
2

Experimental Investigation of Superheated Liquid Jet Atomization due to Flashing Phenomena

Yildiz, Dilek 19 September 2005 (has links)
The present research is an experimental investigation of the atomization of a superheated pressurized liquid jet that is exposed to the ambient pressure due to a sudden depressurization. This phenomena is called flashing and occurs in several industrial environments. Liquid flashing phenomena holds an interest in many areas of science and engineering. Typical examples one can mention: a) the accidental release of flammable and toxic pressure-liquefied gases in chemical and nuclear industry; the failure of a vessel or pipe in the form of a small hole results in the formation of a two-phase jet containing a mixture of liquid droplets and vapor, b) atomisation improvement in the fuel injector technology, c) flashing mechanism occurrence in expansion devices of refrigerator cycles etc... The interest in flashing events is especially true in the safety field where any unexpected event is undesirable. In case of an accident, flammable or toxic gas clouds are anticipated in close regions of the release because of the sudden phase change . Due to the non-equilibrium nature of the flow in these near field regions, conducting accurate data measurements for droplet size and velocity is a challenging task resulting in scarce data in the very close area. This research has been carried out at the von Karman Institute (VKI) within the 5th framework of European Commission to fulfill the goal of understanding of source processes in flashing liquids in accidental releases. The program is carried out under name of FLIE (Flashing Liquids in Industrial Environments)(Contract no: EVG1-CT-2000-00025). The specific issues that are presented in this thesis study are the following:a) a comprehensive state of art of the jet break up patterns, spray characteristics and studies related to flashing phenomena; b)flashing jet breakup patterns and accurate characterization of the atomized jet such as droplet diameter size, velocity and temperature evolution through carefully designed laboratory-scale experiments; c) the influence of the initial storage conditions on the final atomized jet; d) a physical model on the droplet transformation and rapid evaporation in aerosol jets. In order to characterize the atomization of the superheated liquid jet, laser-based optical techniques like Particle Image Velocimetry (PIV), Phase Doppler Anemometry (PDA) are used to obtain information for particle diameter and velocity evolution at various axial and radial distances. Moreover, a high-speed video photography presents the possibility to understand the break-up pattern changes of the simulating liquid namely R-134A jet in function of driving pressure, superheat and discharge nozzle characteristics. Global temperature measurements with an intrusive technique such as thermocouples, non-intrusive measurements with Infrared Thermography are performed. Cases for different initial pressures, temperatures, orifice diameters and length-to-diameter ratios are studied. The break-up patterns, the evolution of the mean droplet size, velocity, RMS, turbulence intensity and temperature along the radial and axial directions are presented in function of initial parameters. Highly populated drop size and velocity count distributions are provided. Among the initial storage conditions, superheat effect is found to be very important in providing small droplets. A 1-D analytical rapid evaporation model is developed in order to explain the strong temperature decrease during the measurements. A sensitivity analysis of this model is provided.
3

Experimental investigation of spray characteristics of prefilming airblast atomizers

Roudini, Mehrzad 11 February 2020 (has links)
Für technische Zerstäubungsprozesse wird häufig eine Flüssigkeitsmenge durch die kinetische Energie eines Hochgeschwindigkeitsgases in einem Luftstromzerstäuber in Einzeltropfen dispergiert. In einem Prefilming-Luftstromzerstäuber befindet sich die zu zerstäubende Flüssigkeit zuerst auf einer Oberfläche (Prefilming-Oberfläche) um einen dünnen Flüssigkeitsfilm zu bilden, bevor sie einem Hochgeschwindigkeitsluftstrom ausgesetzt wird. Das erste Ziel dieser Untersuchungen ist, den Zerstäubungsmechanismus der Prefilming-Zerstäuber zu verstehen und den Effekt variierender Parameter des Sprühsystems beim Zerfallsmechanismus zu ermitteln. Zerfallsregime in der Nähe des Zerstäuberauslasses wurden mittels Schattenverfahren und begleitend durch Partikelverfolgung bestimmt. Im nächsten Schritt wird die Sprühleistung des Prefilming-Luftstromzerstäubers in einer Reihe von Testbedingungen charakterisiert. Die Sprühcharakterisierung wurde mittels Phasen-Doppler-Anemometrie (PDA) durchgeführt um den Einfluss verschiedener Parameter auf die lokale Tropfengröße und Geschwindigkeit im Spray zu untersuchen. Zuletzt werden Zukunftsansätze zu Entwicklung und Design eines Prefilming-Luftstromzerstäubers aufgezeigt. Um einen einzigartigen funktionellen Zusammenhang der experimentellen Daten zu entwickeln, wurde eine Dimensionsanalyse durchgeführt. Darauffolgend zeigt der Einfluss von zwei dimensionslosen Kennzahlen unterschiedliche Sensitivitäten in Abhängigkeit vom Druckbereich und es wurde durch Anpassen der Daten eine geeigneten Korrelationsfunktion hergeteiltet. / A bulk of liquid dispersed into single droplets using the kinetic energy of a high-velocity gas in an air-blast atomizer is frequently employed in technical atomization processes. In a prefilming air-blast atomizer, the atomizing liquid is primary situated on a surface (prefilming surface) to form a thin liquid film before exposing to a high-velocity air flow. The first purpose of this study is to understand atomization mechanisms close to prefilming atomizers and to determine the effect of spray system parameter variations on breakup mechanisms. Breakup regimes in the vicinity of the atomizer exit were determined using the shadowgraphy technique associated with particle tracking. In a next step, the spray performance of prefilming air-blast atomizers are characterized in a wide range of test conditions. For the spray characterization, a phase Doppler anemometry (PDA) was utilized to investigate the influence of variable parameters on the local droplet size and velocity in a spray. Finally, prediction approaches are determined for the development and design of a prefilming air-blast atomizer. In order to develop a unique functional relationship from experimental data, a dimensional analysis has been performed. Subsequently, the influence of two main nondimensional numbers shows different sensitivities depending on the pressure range and was quantified by fitting the data to appropriate correlation functions.
4

Experimental Investigation of superheated liquid jet atomization due to flashing phenomena

Yildiz, Dilek 19 September 2005 (has links)
The present research is an experimental investigation of the atomization of a superheated pressurized liquid jet that is exposed to the ambient pressure due to a sudden depressurization. This phenomena is called flashing and occurs in several industrial environments.<p><p>Liquid flashing phenomena holds an interest in many areas of science and engineering. Typical examples one can mention: a) the accidental release of flammable and toxic pressure-liquefied gases in chemical and nuclear industry; the failure of a vessel or pipe in the form of a small hole results in the formation of a two-phase jet containing a mixture of liquid droplets and vapor, b) atomisation improvement in the fuel injector technology, c) flashing mechanism occurrence in expansion devices of refrigerator cycles etc. The interest in flashing events is especially true in the safety field where any unexpected event is undesirable. In case of an accident, flammable or toxic gas clouds are anticipated in close regions of the release because of the sudden phase change .Due to the non-equilibrium nature of the flow in these near field regions, conducting accurate data measurements for droplet size and velocity is a challenging task resulting in scarce data in the very close area.<p><p>This research has been carried out at the von Karman Institute (VKI) within the 5th framework of European Commission to fulfill the goal of understanding of source processes in flashing liquids in accidental releases. The program is carried out under name of FLIE (Flashing Liquids in Industrial Environments)(Contract no: EVG1-CT-2000-00025). The specific issues that are presented in this thesis study are the following:a) a comprehensive state of art of the jet break up patterns, spray characteristics and studies related to flashing phenomena; b)flashing jet breakup patterns and accurate characterization of the atomized jet such as droplet diameter size, velocity and temperature evolution through carefully designed laboratory-scale experiments; c) the influence of the initial storage conditions on the final atomized jet; d) a physical model on the droplet transformation and rapid evaporation in aerosol jets.<p><p>In order to characterize the atomization of the superheated liquid jet, laser-based optical techniques like Particle Image Velocimetry (PIV), Phase Doppler Anemometry (PDA) are used to obtain information for particle diameter and velocity evolution at various axial and radial distances. Moreover, a high-speed video photography presents the possibility to understand the break-up pattern changes of the simulating liquid namely R-134A jet in function of driving pressure, superheat and discharge nozzle characteristics. Global temperature measurements with an intrusive technique such as thermocouples, non-intrusive measurements with Infrared Thermography are performed. Cases for different initial pressures, temperatures, orifice diameters and length-to-diameter ratios are studied. The break-up patterns, the evolution of the mean droplet size, velocity, RMS, turbulence<p>intensity and temperature along the radial and axial directions are presented in function of initial parameters. Highly populated drop size and velocity count distributions are provided. Among the initial storage conditions, superheat effect is found to be very important in providing small droplets. A 1-D analytical rapid evaporation model is developed in order to explain the strong temperature decrease during the measurements. A sensitivity analysis of this model is provided.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.109 seconds