• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • Tagged with
  • 16
  • 16
  • 16
  • 16
  • 14
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Regulation of Multidrug Resistance Phosphoglycoprotein (MDR1/P-gp) and Breast Cancer Resistance Protein (BCRP) in the Human Placenta

Rainey, Jenna 04 May 2011 (has links)
Multidrug resistance phosphoglycoprotein (MDR1/P-gp) and breast cancer resistance protein (BCRP) were first isolated in chemoresistant cancer cells and have since been found in a variety of normal tissue, including the placenta. The potential function of MDR1/P-gp and BCRP in the human placenta is to protect the fetus from maternally circulating endogenous steroids and hormones, therapeutic drugs and toxins. The objective of this study was to examine the role of maternal steroids in the regulation of MDR1/P-gp and BCRP in the human placenta. Trophoblast cells were isolated from term placenta tissues and immunohistochemistry, western blot analysis and transport studies were used to determine the effect of maternal steroids on MDR1/P-gp and BCRP regulation. Maternal steroids, present at high concentrations in maternal serum, did not have an effect on BCRP in human syncytiotrophoblast. Estrogen and progesterone did not alter MDR1/P-gp levels in human syncytiotrophoblast, but cortisol significantly decreased MDR1/P-gp levels.
2

The Regulation of Multidrug Resistance Phosphoglycoprotein (MDR1/P-gp) and Breast Cancer Resistance Protein (BCRP) in the Human Placenta

Rainey, Jenna 04 May 2011 (has links)
Multidrug resistance phosphoglycoprotein (MDR1/P-gp) and breast cancer resistance protein (BCRP) were first isolated in chemoresistant cancer cells and have since been found in a variety of normal tissue, including the placenta. The potential function of MDR1/P-gp and BCRP in the human placenta is to protect the fetus from maternally circulating endogenous steroids and hormones, therapeutic drugs and toxins. The objective of this study was to examine the role of maternal steroids in the regulation of MDR1/P-gp and BCRP in the human placenta. Trophoblast cells were isolated from term placenta tissues and immunohistochemistry, western blot analysis and transport studies were used to determine the effect of maternal steroids on MDR1/P-gp and BCRP regulation. Maternal steroids, present at high concentrations in maternal serum, did not have an effect on BCRP in human syncytiotrophoblast. Estrogen and progesterone did not alter MDR1/P-gp levels in human syncytiotrophoblast, but cortisol significantly decreased MDR1/P-gp levels.
3

The Regulation of Multidrug Resistance Phosphoglycoprotein (MDR1/P-gp) and Breast Cancer Resistance Protein (BCRP) in the Human Placenta

Rainey, Jenna 04 May 2011 (has links)
Multidrug resistance phosphoglycoprotein (MDR1/P-gp) and breast cancer resistance protein (BCRP) were first isolated in chemoresistant cancer cells and have since been found in a variety of normal tissue, including the placenta. The potential function of MDR1/P-gp and BCRP in the human placenta is to protect the fetus from maternally circulating endogenous steroids and hormones, therapeutic drugs and toxins. The objective of this study was to examine the role of maternal steroids in the regulation of MDR1/P-gp and BCRP in the human placenta. Trophoblast cells were isolated from term placenta tissues and immunohistochemistry, western blot analysis and transport studies were used to determine the effect of maternal steroids on MDR1/P-gp and BCRP regulation. Maternal steroids, present at high concentrations in maternal serum, did not have an effect on BCRP in human syncytiotrophoblast. Estrogen and progesterone did not alter MDR1/P-gp levels in human syncytiotrophoblast, but cortisol significantly decreased MDR1/P-gp levels.
4

The Regulation of Multidrug Resistance Phosphoglycoprotein (MDR1/P-gp) and Breast Cancer Resistance Protein (BCRP) in the Human Placenta

Rainey, Jenna January 2011 (has links)
Multidrug resistance phosphoglycoprotein (MDR1/P-gp) and breast cancer resistance protein (BCRP) were first isolated in chemoresistant cancer cells and have since been found in a variety of normal tissue, including the placenta. The potential function of MDR1/P-gp and BCRP in the human placenta is to protect the fetus from maternally circulating endogenous steroids and hormones, therapeutic drugs and toxins. The objective of this study was to examine the role of maternal steroids in the regulation of MDR1/P-gp and BCRP in the human placenta. Trophoblast cells were isolated from term placenta tissues and immunohistochemistry, western blot analysis and transport studies were used to determine the effect of maternal steroids on MDR1/P-gp and BCRP regulation. Maternal steroids, present at high concentrations in maternal serum, did not have an effect on BCRP in human syncytiotrophoblast. Estrogen and progesterone did not alter MDR1/P-gp levels in human syncytiotrophoblast, but cortisol significantly decreased MDR1/P-gp levels.
5

Role lékových transportérů v placentárním přestupu entekaviru / Role of drug transporters in placental transfer of entecavir

Křečková, Veronika January 2019 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Veronika Křečková Supervisor: PharmDr. Lukáš Červený, Ph.D. Title of diploma thesis: Role of drug transporters in placental transfer of entecavir Entecavir (ETV), an analogue of guanosine, is a highly efficient anti-hepatitis B antiviral drug. It is the first-line therapy for both adults and children. Its use in pregnancy is limited due to a number of factors, including lack of data on placental pharmacokinetics. The placental transition of drugs is frequently controlled by drug transporters. ATP-binding (ABC) transporters, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) or multidrug resistance-associated protein 2 (MRP2) localized in the apical membrane of syncytiotrophoblast and pumping their substrates in the feto-maternal direction belong to most significant determinants of placental pharmacokinetics. Moreover placental transport of nucleoside-derived drugs can be affected by the activity of nucleoside transporters (NTs); equilibrative nucleoside transporters (ENTs) mediate facilitated diffussion, while the concentrative nucleoside transporters (CNTs) control active influx of their substrates. The aim of the diploma thesis was to describe the role of P-gp, BCRP, MRP2 and NTs (ENTs and...
6

Mechanisms of regulation of P-glycoprotein and breast cancer resistance protein at the blood-brain barrier : focus on the role of morphine, and P-glycoprotein activation / Mécanismes de régulation de la P-glycoprotéine (P-gp) et de la Breast Cancer Resistance Protein (BCRP) au niveau de la barrière hémato-encéphalique : focus sur le rôle de la morphine, et l’activation de la P-glycoprotéine / Mecanismos de regulação da glicoproteína P e da proteína de resistência ao cancro da mama ao nível da barreira-hematoencefálica : focus no papel da morfina, e na activação da glicoproteína P

Chaves, Catarina Alexandra da Silva 30 November 2015 (has links)
La barrière hémato-encéphalique (BHE) représente la principale interface d'échange moléculaire entre la circulation sanguine et le système nerveux central (SNC), où elle joue un rôle essentiel sur le contrôle du passage bidirectionnel de composés endogènes et exogènes. À la BHE, la P-glycoprotéine (P-gp) et Breast Cancer Resistance Protein (BCRP) sont les transporteurs d’efflux ABC les plus importants, empêchant l'entrée de composés toxiques, des médicaments et des xénobiotiques circulant dans le sang dans le cerveau. Il y a un intérêt croissant pour la compréhension des mécanismes moléculaires sous-jacents à la modulation de l’expression et de la fonction de la P-gp et BCRP, afin de pouvoir contrôler l'accumulation de substances neurotoxiques dans le SNC et de surmonter les phénomènes de pharmaco-résistance. Des études récentes ont montré que la morphine, elle-même un substrat de la P-gp, est impliquée dans l’augmentation de l'expression de la P-gp, qui peuvent contribuer à sa faible pénétration dans le cerveau et pour le développement de la tolérance. Cependant, le mécanisme sous-jacent à l’induction de la P-gp par la morphine, bien comme son rôle sur l'expression de BCRP était inconnu. Des rats ont été utilisés comme modèle animal pour l'étude de l'amplitude et la cinétique de la modulation de la P-gp et Bcrp à la BHE, après un traitement morphinique subchronique, en utilisant un protocole d’escalade de doses. Des microvaisseaux cérébraux isolés ont été utilisés comme modèle pour étudier la BHE, et les contenus en P-gp et Bcrp après le traitement in vivo, tandis que la lignée cellulaire hCMEC/D3 a parfois été utilisé pour des études complémentaires. Nos résultats ont montré qu’un régime subchronique de traitement à la morphine pendant 5 jours a induit la P-gp et Bcrp 12 à 24 heures après la dernière dose de morphine, un effet qui n'a pas été enregistrée lors des précédentes temps de sacrifices des animaux, ni avec une traitement aigue à la morphine. Le traitement des animaux avec un antagoniste de du récepteur glutamatergique NMDA, ou avec un inhibiteur de la COX-2 a aboli l’induction protéique de la P-gp et Bcrp par la morphine-subchronique, ce qui suggère que les deux facteurs sont impliqués dans l’up-régulation morphine-dépendante de la P-gp et BCRP. Sachant que l’induction a été enregistrée seulement à partir de 12h après la dernière dose de morphine, nous avons examiné si elle était un effet direct de l'exposition continue à la morphine, ou plutôt une conséquence du sevrage à la morphine développé après l'arrêt du traitement. Les rats ont été traités soit avec une perfusion constante de morphine (5 jours), soit avec deux schémas chroniques de morphine lorsque le sevrage a été précipité par l'administration de naloxone: un régime de doses croissantes (5 jours) ou un régime de doses constantes de morphine. La perfusion en continue de morphine n'a pas changé les niveaux de P-gp et Bcrp dans les microvaisseaux cérébraux de rat, et du coup n'a pas une conséquence directe sur la cascade de régulation de ces transporteurs à la BHE. Le sevrage provoqué par la naloxone a augmenté les niveaux d’ARNm pour le Mdr1a et Bcrp, mais l'expression et de l'activité protéiques sont restées inchangées après l'administration de naloxone. Cette disparité peut être dû soit à un effet de la régulation post-traductionnelle, soit à l’action de la naloxone dans des récepteurs non-opioïdes, qui peut entraver l’induction de la P-gp et Bcrp. Par la suite, on a fait un large screening de l'expression de plusieurs récepteurs de neurotransmetteurs chez la BHE de rat, beaucoup d'entre eux impliqués dans la signalisation inflammatoire, et qui peut jouer un rôle dans la modulation de ces transporteurs ABC. (...) / The blood-brain barrier (BBB) is the main interface of molecular exchange between the bloodstream and the central nervous system (CNS), where it plays an essential role on the control over the bi-directional passage of endogenous and exogenous compounds. At the BBB, P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are the most important ABC drug efflux transporters preventing the entry into the brain of toxic compounds, drugs and xenobiotics circulating in the blood. There is increasing interest in understanding the molecular mechanisms underlying the modulation of P-gp and BCRP expression and function in order to control CNS accumulation of neurotoxicants and to overcome pharmacoresistance phenomena. Recent studies showed that morphine, itself a substrate of P-gp, is implicated in the up-regulation of P-gp expression, which may contribute to its poor brain penetration and tolerance. However, it was unknown the mechanism underlying P-gp induction by morphine and its role on BCRP expression. Rats were used as an animal model for the study of the amplitude and the kinetics of the modulation of P-gp and Bcrp expressions at the BBB following a subchronic morphine treatment, in an escalating morphine dose regimen. Freshly isolated rat brain microvessels were used as BBB model to study P-gp and Bcrp contents following the in vivo treatment, while the hCMEC/D3 cell line was occasionally used for complementary studies. Our results demonstrated that a 5-day subchronic morphine regimen up-regulated both P-gp and Bcrp 12 to 24h after the last dose of morphine, which was not registered at earlier time-points of animal sacrifice, nor with a single dose of morphine. The animal treatment with a glutamatergic NMDA receptor antagonist, or a COX-2 inhibitor abolished the subchronic morphine-induced P-gp and Bcrp protein up-regulation, 24h after the last dose of morphine, suggesting that both are implicated in the morphine-dependent P-gp and Bcrp up-regulation. Since the registered up-regulation only occurred from 12h after the last dose of morphine-onwards, we investigated whether it was a direct effect of continued exposure to morphine, or rather a consequence of the morphine withdrawal developed after discontinuation of treatment. Rats were treated either with a constant morphine infusion (5 days), or two chronic morphine regimens where withdrawal was precipitated by naloxone administration: an escalating dose (5 days) or a constant dose morphine regimen followed by a withdrawal period (2 days) and resume of the treatment for 3 additional days. Continuous i.v. morphine did not change P-gp and Bcrp levels in rat brain microvessels, it does not have a direct consequence on the cascade of regulation of these transporters at the BBB. Naloxone-precipitated withdrawal after escalating or chronic morphine dose regimen increased Mdr1a and Bcrp mRNA levels, but protein expression and activity remained unchanged after naloxone administration. This latter result discrepancy may be due to posttranslational regulation or naloxone action at non-opioid receptors hampering P-gp and Bcrp up-regulation. Subsequently, we did a large screening of the expression of several neurotransmitter receptors at the rat BBB, many of them implicated in the inflammatory cell-cell signaling, and which may have a role in the modulation of these ABC transporters. Also, we compared two different approaches of isolation of rat brain microvessels, mechanical dissection and enzymatic digestion, to assess which yield the purest microvessel fraction for the BBB study. The enzymatic digestion provided the highest enrichment of endothelial cells and pericytes, and the least contamination with astrocyte and neuron markers. (...) / A barreira hemato-encefálica (BHE) representa a principal interface entre a corrente sanguínea e o sistema nervoso central (SNC), desempenhando um papel essencial no controlo da passagem sangue-cérebro de diversos compostos endógenos e exógenos. A glicoproteina P (P-gp) e a proteína de resistência ao cancro da mama (BCRP) são os principais transportadores de efluxo da família ABC presentes ao nível da BHE, limitando a passagem cerebral de compostos tóxicos, fármacos e xenobióticos circulantes na corrente sanguínea. Actualmente, regista-se um crescente interesse na comunidade científica para a melhor compreensão dos mecanismos moleculares subjacentes à modulação quer da expressão quer da função da P-gp e BCRP, no sentido de desenvolver medidas mais eficazes quer para prevenção da acumulação de compostos neurotóxicos no SNC, quer para superar fenómenos de farmacorresistência associados à terapêutica. Estudos recentes evidenciam que a morfina, por si só um substrato da P-gp, está envolvida na indução da expressão da P-gp, o que poderá contribuir para a sua menor penetração cerebral, bem como para o desenvolvimento de tolerância. No entanto, não se conhece o mecanismo subjacente a tal indução da P-gp pela morfina, nem o seu eventual papel na expressão da BCRP. Com efeito, na condução da presente dissertação, realizamos um estudo da amplitude e a cinética da regulação da expressão da P-gp e BCRP ao nível da BHE na sequência de um tratamento subcrónico com morfina, em regime de doses crescentes, usando o rato como modelo animal. Para o efeito, foram isolados os capilares cerebrais dos animais sujeitos a tratamento, in vivo, enquanto que a linha celular hCMEC/D3 foi ocasionalmente utilizada para estudos complementares. Os nossos resultados demonstraram que um tratamento subcrónico com morfina (5 dias) foi capaz de induzir tanto a P-gp como a Bcrp 12 a 24 horas após a última dose de morfina administrada, mas não para tempos de sacrifício anteriores, bem como tal indução não foi registada quando a morfina foi administrada de forma aguda. O tratamento animal com um antagonista do receptor glutamatérgico NMDA, ou com um inibidor da COX-2 anulou este efeito de indução da P-gp e Bcrp pela administraçãosubcrónica de morfina, o que sugere o envolvimento destes dois componentes na indução da P-gp e Bcrp dependente da morfina. Uma vez que este aumento da expressão só surgiu a partir de 12h após a última dose de morfina, decidimos investigar se tal seria um efeito direto da exposição continuada à morfina, ou por outro lado, uma consequência do síndrome de abstinência à morfina, desenvolvido após a descontinuação do tratamento. Desta forma, os animais foram tratados por um lado com uma infusão contínua de morfina (5 dias), ou sujeitos a dois diferentes regimes de exposição crónica à morfina, após os quais o síndrome de abstinência foi provocado pela administração de naloxona. A administração de morfina em contínuo, via i.v., não alterou os níveis de P-gp e BCRP nos capilares cerebrais de rato, o que indica a ausência de uma consequência directa da morfina na cascata de regulação destes transportadores ao nível da BHE. O síndrome de abstinência opióide provocado pela naloxona aumentou os níveis de mRNA Mdr1a e Bcrp, mas tanto a expressão e atividade proteicas mantiveram-se inalteradas após a administração de naloxona. Esta discrepância de resultados pode-se dever ou a um regulamento pós-translacional, ou a uma acção inespecífica da naloxona em receptores não opiáceos, impedindo a indução da P-gp e Bcrp. Num outro estudo, foi feito um screening da expressão de vários receptores de neurotransmissores na BHE de rato, muitos deles envolvidos na sinalização célula-célula em processos inflamatórios, e que podem ter um papel na modulação destes transportadores ABC. (...)
7

Riboflavin Transporters and Breast Cancer Resistance Protein: Cimetidine-Riboflavin Interactions in the Mammary Gland

Dedina, Liana 28 November 2012 (has links)
Mother's milk provides multiple benefits to the offspring. However, xenobiotics transferred into breast milk may pose a risk to the nursing infant. The breast cancer resistance protein (BCRP) actively transports xenobiotics into breast milk. BCRP also transports nutrients, like riboflavin, and together with recently identified riboflavin transporters (RFT), may provide a mechanism for riboflavin secretion into breast milk. Expression of RFT in the mammary gland remained unknown. Our objective was to characterize Bcrp and Rft mRNA expression in the mammary gland of FVB/N mice, and investigate a strategy to decrease excretion of BCRP-transported xenobiotics into the milk using riboflavin intervention. Rft and Bcrp mRNA were upregulated in the mammary gland of lactating mice. An intravenous riboflavin administration significantly reduced the levels of BCRP-transported cimetidine in milk. This study demonstrates the use of riboflavin to exploit the function of mammary BCRP in order to reduce xenobiotic secretion into breast milk.
8

Riboflavin Transporters and Breast Cancer Resistance Protein: Cimetidine-Riboflavin Interactions in the Mammary Gland

Dedina, Liana 28 November 2012 (has links)
Mother's milk provides multiple benefits to the offspring. However, xenobiotics transferred into breast milk may pose a risk to the nursing infant. The breast cancer resistance protein (BCRP) actively transports xenobiotics into breast milk. BCRP also transports nutrients, like riboflavin, and together with recently identified riboflavin transporters (RFT), may provide a mechanism for riboflavin secretion into breast milk. Expression of RFT in the mammary gland remained unknown. Our objective was to characterize Bcrp and Rft mRNA expression in the mammary gland of FVB/N mice, and investigate a strategy to decrease excretion of BCRP-transported xenobiotics into the milk using riboflavin intervention. Rft and Bcrp mRNA were upregulated in the mammary gland of lactating mice. An intravenous riboflavin administration significantly reduced the levels of BCRP-transported cimetidine in milk. This study demonstrates the use of riboflavin to exploit the function of mammary BCRP in order to reduce xenobiotic secretion into breast milk.
9

Interindividual Variability of Drug Transport Proteins : Focus on Intestinal Pgp (ABCB1) and BCRP (ABCG2)

Englund, Gunilla January 2005 (has links)
<p>The appearance of adverse drug reactions is a common reason for hospitalization in Western countries. Research on underlying biological mechanisms for interindividual variability in drug response aims to better identify patients with exceptional genetic traits, disease conditions or risk of drug-drug interactions and thereby help to prevent adverse drug reactions. </p><p>Active transport mechanisms are involved in the absorption and disposition of several therapeutic agents. The main objective of this thesis was to investigate factors potentially affecting transport proteins and thus contributing to variability in drug absorption and disposition. Studies of physiological, genetic, environmental, and pathological factors were included. The main focus was the two ATP-binding cassette (ABC) transporters: P-glycoprotein 170 (Pgp) and Breast Cancer Resistance Protein (BCRP). </p><p>Quantification of transport protein mRNAs along the human intestine indicated that eight of the nine investigated drug transporters were expressed in a region-dependent manner. Effects of drug-drug interactions may therefore vary depending on the site of absorption. The genetic aspect was illustrated by identification of sequence variation in the gene encoding BCRP, the most highly expressed ABC transporter along the human intestine. Drug-drug interactions are important environmental causes of interindividual variability. An evaluation of the effects of Pgp-mediated drug-drug interactions showed that patients receiving Pgp inhibitors had elevated serum concentrations of the Pgp substrate digoxin and that digoxin concentrations were positively correlated with the number of co-administered Pgp inhibitors. The final topic in this thesis was that of drug-disease interactions. BCRP and Pgp were down-regulated during active inflammation in patients with ulcerative colitis. This may contribute to altered concentrations of drug in the intestinal mucosa during periods of inflammation and possibly to changes in drug absorption.</p><p>To summarize, results of this thesis emphasize the complex background to the interindividual variability of drug transport proteins, where physiological, genetic, environmental and pathological factors all can contribute.</p>
10

Interindividual Variability of Drug Transport Proteins : Focus on Intestinal Pgp (ABCB1) and BCRP (ABCG2)

Englund, Gunilla January 2005 (has links)
The appearance of adverse drug reactions is a common reason for hospitalization in Western countries. Research on underlying biological mechanisms for interindividual variability in drug response aims to better identify patients with exceptional genetic traits, disease conditions or risk of drug-drug interactions and thereby help to prevent adverse drug reactions. Active transport mechanisms are involved in the absorption and disposition of several therapeutic agents. The main objective of this thesis was to investigate factors potentially affecting transport proteins and thus contributing to variability in drug absorption and disposition. Studies of physiological, genetic, environmental, and pathological factors were included. The main focus was the two ATP-binding cassette (ABC) transporters: P-glycoprotein 170 (Pgp) and Breast Cancer Resistance Protein (BCRP). Quantification of transport protein mRNAs along the human intestine indicated that eight of the nine investigated drug transporters were expressed in a region-dependent manner. Effects of drug-drug interactions may therefore vary depending on the site of absorption. The genetic aspect was illustrated by identification of sequence variation in the gene encoding BCRP, the most highly expressed ABC transporter along the human intestine. Drug-drug interactions are important environmental causes of interindividual variability. An evaluation of the effects of Pgp-mediated drug-drug interactions showed that patients receiving Pgp inhibitors had elevated serum concentrations of the Pgp substrate digoxin and that digoxin concentrations were positively correlated with the number of co-administered Pgp inhibitors. The final topic in this thesis was that of drug-disease interactions. BCRP and Pgp were down-regulated during active inflammation in patients with ulcerative colitis. This may contribute to altered concentrations of drug in the intestinal mucosa during periods of inflammation and possibly to changes in drug absorption. To summarize, results of this thesis emphasize the complex background to the interindividual variability of drug transport proteins, where physiological, genetic, environmental and pathological factors all can contribute.

Page generated in 0.125 seconds