Spelling suggestions: "subject:"breast photosynthesis"" "subject:"breast biosynthesis""
11 |
Reconstrução de tomossíntese mamária utilizando redes neurais com aprendizado profundo /Paula, Davi Duarte de January 2020 (has links)
Orientador: Denis Henrique Pinheiro Salvadeo / Resumo: Tomossíntese Mamária Digital (DBT) é uma técnica de imageamento radiográfico, com aquisição de projeções em ângulos limitados utilizando dose reduzida de radiação. Ela tem por objetivo reconstruir fatias tomográficas do interior da mama, possibilitando o diagnóstico precoce de possíveis lesões e aumentando, consequentemente, a probabilidade de cura do paciente. Contudo, devido ao fato de que DBT utiliza doses baixas de radiação, a imagem gerada contém mais ruído que a mamografia digital. Embora a qualidade do exame esteja diretamente relacionada com a dose utilizada, espera-se que a dose de radiação empregada no exame seja a mais baixa possível, mas ainda com qualidade suficiente para que o diagnóstico possa ser realizado, conforme o princípio As Low As Reasonably Achievable (ALARA). Uma das etapas importantes para se buscar o princípio ALARA é a reconstrução tomográfica, que consiste em um software que gera as fatias do interior da mama a partir de um conjunto de projeções 2D de DBT adquiridas. Por outro lado, técnicas de Aprendizado de Máquina, especialmente redes neurais com aprendizado profundo, que recentemente tem evoluído consideravelmente o estado da arte em diversos problemas de Visão Computacional e Processamento de Imagens, tem características adequadas para serem aplicadas também na etapa de reconstrução. Deste modo, este trabalho investigou uma arquitetura básica de rede neural artificial com aprendizado profundo que seja capaz de reconstruir imagens de DBT, espe... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Digital Breast Tomosynthesis (DBT) is a technique of radiographic imaging, with acquisition of projections at limited angles using reduced dose of radiation. It aims to reconstruct tomographic slices inside the breast, making possible the early diagnosis of possible lesions and, consequently, increasing the probability of cure of the patient. However, due to the fact that DBT uses low doses of radiation, the generated image contains more noise than digital mammography. Although the quality of the exam is directly related to the dose applied, the radiation dose used in the examination is expected to be as low as possible, but still keeping enough quality for the diagnosis to be made, as determined by the As Low As Reasonably Achievable (ALARA) principle. One of the important steps to achieve the ALARA principle is the tomographic reconstruction, which consists of a software that generates slices inside the breast from an acquired set of 2D DBT projections. On the other hand, Machine Learning techniques, especially neural networks with deep learning, that have recently evolved considerably the state-of-the-art in several problems in Computer Vision and Image Processing areas, it has suitable characteristics to be applied also in the reconstruction step. Thus, this work investigated a basic architecture of artificial neural network with deep learning that is capable to reconstruct DBT images, especially focused on noise reduction. Furthermore, considering an additional filtering... (Complete abstract click electronic access below) / Mestre
|
12 |
Evaluation quantitative de tissu fibroglandulaire pour l'estimation de l'énergie absorbée différenciée par tissu en tomosynthèse du sein / Quantitative evaluation of fibroglandular tissue for estimation of tissue-differentiated absorbed energy in breast tomosynthesisGeeraert, Nausikaa 06 October 2014 (has links)
Cette thèse avait deux buts principaux : a) l'implémentation et l'amélioration d'une méthode de calcul de densité volumique du sein (VBD), et b) la proposition d'une mesure d'irradiation utilisable pour l'évaluation du risque individuel en mammographie avec une méthode pour l'estimer. La densité du sein est connue comme indicateur de risque du cancer. Une méthode de quantification objective de la VBD a été développée, à partir d'approches existantes, et améliorée. La méthode a été implémentée pour deux systèmes de mammographie. Elle repose sur l'étalonnage du système de mammographie et la chaîne d'acquisition avec des fantômes équivalents aux tissus mammaires. Une carte de densité est calculée.La contribution majeure de la thèse consiste en une nouvelle méthode de validation, applicable à tout calcul de VBD d'image de mammographie. Elle consiste à comparer les résultats aux valeurs de densité obtenues par des scanners thoraciques pour la même patiente. Cette validation a été appliquée à notre méthode de calcul et nous avons trouvé 10% d'écart moyen entre les deux méthodes, ce qui est comparable aux résultats de l'état de l'art. Pour le risque d'irradiation individuel, nous proposons de remplacer la dose glandulaire moyenne par l'énergie déposée, qui dépend de la quantité et de la distribution du tissu glandulaire, qui est le tissu à risque. L'énergie volumique déposée est calculée par simulation de Monte Carlo. Le VBD, calculé pour l'image de projection à 0° en tomosynthèse, aide à localiser le tissu glandulaire et à attribuer l'énergie déposée dans les tissus différents. Une proposition a été faite pour des fantômes géométriques, un fantôme texturé et un cas de patiente / In this research project the main goals were a) to implement a method for the computation of the volumetric breast density (VBD), and b) to propose an improved quantity for the assessment of individual radiation-induced risk, in particular during mammography, together with a method to quantify it. The breast density is known as a breast cancer risk factor. The objective quantification of the volumetric breast density was developed, based on already published methods, and improved. The method was implemented for two mammography systems. It is based on the calibration of the mammography system acquisition chain with breast equivalent phantoms and computes a breast density map. Our most important contribution resides in a new validation method applicable to any VBD computation, consisting in comparing its results with the VBD obtained from a thorax CT examination for the same patient. This validation method was applied to our VBD computation. We found an average deviation between mammography and CT of less than 10%. Our results are comparable to the state-of-the-art results for other validation methods. For the individual radiation risk, we proposed to replace the average glandular dose by the imparted energy, which depends on the quantity and distribution of the glandular tissue, which is the tissue at risk. The volumetric imparted energy is computed from Monte Carlo simulations. The VBD, computed for the 0° projection of tomosynthesis exams, helps us to localize the glandular tissue and to attribute the imparted energy to the different tissues. A proposition was implemented for geometric phantoms, a textured phantom and a patient case.
|
13 |
Optimisation de l’angiomammographie et de l’angiotomosynthèse double-énergie / Optimization of contrast enhanced digital mammography and contrast enhanced digital breast tomosynthesisDromain, Clarisse 07 January 2015 (has links)
Objectifs : L’objectif a été de d’optimiser les protocoles d’acquisition des examens d’angiomammographie double-énergie, d’étudier la faisabilité de l’angiotomosynthèse pour la détection et la caractérisation des tumeurs mammaires, et d’étudier la faisabilité des biopsies stéréotaxiques sous guidage de l’angiomammographie. Méthodes : Une étude d’optimisation des paramètres d’acquisition de l’angiomammographie a été réalisée dans 4 situations cliniques pour lesquelles la qualité diagnostique requise des images de basse énergie et la dose totale délivrée à la patiente ne sont pas identiques. L’optimisation des paramètres d'exposition (anode/filtre, kVp, mAs) des images de basse énergie (BE) et haute énergie (HE) a été réalisée à partir d’une modélisation théorique de la chaîne d’acquisition. Une validation a été effectuée par mesures expérimentales sur des images de fantôme d’inserts d’iode. Nous avons ensuite étudié la technique d’angiotomosynthèse mammaire basée sur une approche double-énergie. Un nouveau fantôme anthropomorphique numérique du sein et de ses lésions, basé sur l’utilisation de primitives géométriques complexes et d’une technique de maillage surfacique, a été amélioré et utilisé pour évaluer les performances de l’angiomammographie optimisée, puis de l’angiotomosynthèse en comparaison à l’angiomammographie. Enfin, nous avons proposé un scénario pour la réalisation d’un examen de stéréotaxie avec injection d’un agent de contraste iodé et étudié la faisabilité de recombinaison d’image de haute et de basse énergie acquises à des temps différents de l’injection.Résultats et conclusion : Les optima des paramètres d’exposition trouvés par simulation avec les valeurs de SDNRpixel et SDNR2pixel /Dosetotale qui en résultent, ont été confirmés expérimentalement. Les valeurs de SDNR par pixel dans les images recombinées sont augmentées pour toutes les indications cliniques en comparaison à celle obtenues avec SenoBright ® (produit commercial de référence). L'impact sur la qualité de l’image de BE, évalué par des expérimentations sur fantôme CDMAM, a montré que les paramètres optimisés fournissent une détection similaire ou acceptable par rapport à la mammographie standard, à l’exception de l'indication de dépistage lorsque l’on considère les objets de très petits diamètres.L’étude de lecture humaine d’images simulées d’un fantôme anthropomorphique du sein incluant le rehaussement glandulaire physiologique et différents modèle tumoraux n’a pas montré d’augmentation significative de sensibilité de détection des acquisition 3D d’angiotomosynthèse comparativement aux acquisitions 2D d’angiomammographie. Les deux paramètres qui influençaient le plus la sensibilité était la concentration en iode des tumeurs et la densité du sein. L’angiomammographie était par ailleurs significativement plus spécifique que l’angiotomosynthèse. Une perspective d’amélioration pour l’angiotomosynthèse pourrait donc être l’utilisation d’algorithmes de reconstruction 3D spécifiques de cette modalité qui minimiseraient le bruit de reconstruction. Le scénario proposé pour la réalisation de biopsies sous guidage de l’angiomammographie, a mis en évidence deux contraintes techniques que sont l’échauffement du tube à rayons X et le surcroit de dose dû à la répétition des paires d’acquisitions en haute et basse énergies. Une des solutions envisagées a été de limiter le nombre d’acquisitions de BE. Notre étude a montré que la recombinaison d’une image HE avec une image BE acquise antérieurement modifiait le SDNR des lésions simulées comparativement à une recombinaison appariée d’images BE et HE acquises au même temps de l’injection. Ces modifications dépendaient du temps du pic de rehaussement maximal et du washout de la lésion. / Objectives: The purpose was to optimize the exposure parameters of CESM examinations, to assess the feasibility of contrast-enhanced DBT (CE-DBT) for the detection and the characterization of breast tumors, and to assess CESM-guided stereotactic biopsies. Methods: At first, we optimized the CESM exposure parameters in four different clinical applications for which different levels of average glandular dose and different low energy image quality are required. The optimization of exposure parameters (anode/filter, kVp, mAs) for low energy (LE) and high energy (HE) images at different levels of average glandular dose and different ratios between LE and total doses has been conducted using a simulator of the x-ray mammographic image chain. An experimental validation was then performed through phantom experiments. Secondly, we assessed the potential of CE-DBT based on a dual-energy approach. A new mesh-based anthropomorphic breast phantom was improved and used to evaluate the performance of CESM and then to compare CESM and CE-DBT. Finally, we evaluated the technical feasibility of CESM-guided biopsy. After identifying some technical constraints, we assessed the performance of the recombination of LE and HE images acquired at different times after injection, using simulated images of a geometric phantom with uniform texture, and simulated images of an anthropomorphic textured phantom with and without motion artifacts.Results and conclusion : For the four different clinical indications, optima found by simulation, with resulting SDNRpixel and SDNR2pixel/Dosetotal, were confirmed through real acquisition of images on phantoms. Our results indicate that the SDNR per pixel in recombined CESM images increased in all of the four clinical indications compared to recombined images obtained using SenoBright ® (commercial product used as reference). This result suggests the possibility to detect more subtle contrast enhancements and to decrease the number of false negatives found in clinical CESM examinations. The impact of a new dose allocation between LE and HE exposures was also evaluated on LE image quality. Results from CDMAM phantom experiments indicate that optimized parameters provide similar or acceptable detection compared to standard mammography, except for screening indication when considering the very small diameter objects.The human observer study on anthropomorphic phantom images, taking into account tumor and breast parenchyma enhancement, revealed that detection and characterization sensitivity of iodine-enhanced lesions are not statistically different between 2D CESM and 3D CE-DBT. The most influencing parameters for the detectability and the lesion size assessment were the lesion iodine concentration and the breast density. CESM was significantly more specific than CE-DBT. One of the assumptions to explain this result is the presence of higher noise in CE-DBT than in CESM images. A future improvement for CE-DBT could therefore be the design of a specific reconstruction algorithm minimizing reconstructed noise.With respect to CESM-guided biopsy the proposed scenario pointed out two major constraints, one related to the thermal load of the x-ray tube, the second related to the increased dose due to the repetition of LE and HE images. One proposed solution was to limit the number of LE exposures, requiring the possibility to recombined LE and HE images acquired at different injection time points. Our study showed that the recombination of a HE image with a LE image acquired earlier leads to SDNR changes compared to paired recombination. These changes are function of the enhancement time to peak and the washout of the lesion, and had a limited impact on the lesion detectability.
|
14 |
Correção do espectro de potência do ruído na simulação de redução da dose de radiação em imagens de tomossíntese digital mamária / Noise power spectrum correction for radiation dose reduction simulation in digital breast tomosynthesisGuerrero, Igor 21 February 2018 (has links)
Esse trabalho apresenta uma nova metodologia para a correção do espectro de potência do ruído no processo de simulação de aquisições de imagens de tomossíntese digital mamária (Digital Breast Tomosynthesis - DBT) com doses reduzidas de radiação. A simulação é realizada por meio da inserção de ruído quântico dependente do sinal em imagens previamente adquiridas com a dose padrão de radiação. A DBT utiliza a mesma tecnologia de raios X que a mamografia digital, porém com a capacidade de prover ao médico exames do volume tridimensional da mama, minimizando o problema de superposição de tecidos. Apesar de ser o sucessor da mamografia, estudos têm mostrado que a otimização da relação entre a dose de radiação e a qualidade da imagem adquirida ainda não está bem estabelecida na DBT. Devido à impossibilidade de realizar diversas exposições de radiação a uma mesma paciente para os estudos de otimização da dose de radiação, é desejável que exista um método capaz de simular com exatidão diversas exposições tendo como base uma imagem clínica de referência. Embora existam diversos métodos para a simulação da redução de dose em exames mamográficos, o mesmo não pode ser dito quanto a imagens de DBT. O método desenvolvido para simulação da redução da dose de radiação em imagens de DBT se baseia em uma abordagem de inserção de ruído por meio de uma transformada de estabilização de variância, que já foi utilizada para simulação da redução de dose em exames de mamografia digital. Porém, esse trabalho propõe a inclusão da correção do espectro de potência do ruído para otimizar o desempenho do método de inserção de ruído para exames de DBT. Os resultados obtidos mostraram que, quando comparando a imagens de referência, a as imagens simuladas apresentaram erro menores que 1% para a análise do valor médio e desvio padrão e erro próximo de 5% para a análise do espectro de potência, apresentado resultados até 64% melhores que métodos não otimizados para DBT. / This work presents a new methodology for noise power spectrum correction in the simulation of digital breast tomosynthesis (DBT) images with reduced dose of radiation. The simulation is performed by inserting a signal-dependent quantum noise into previously acquired images with the standard dose of radiation. Using the same X-ray technology as a standard mammography, the DBT is capable of reconstructing the inner tissues of the patients\' breasts as a three-dimensional volume, providing more resources for cancer detection than its bi-dimensional counterpart and minimizing tissue overlapping. Despite being the successor to mammography, studies have shown that the optimization of the relationship between radiation dose and image quality is not well established in DBT yet. Due to the impossibility of exposing the same patient to multiple exams with different doses each, a simulation method able to mimic clinical images with high reliability is desirable. Despite the number of methods proposed for dose reduction simulation in mammography, scarcely any may be used in DBT. The method developed for simulation of radiation dose reduction in DBT images is based on a noise insertion approach using a variance-stabilizing transformation, which has already been used to simulate dose reduction in digital mammography exams. However, this work proposes the inclusion of the noise power spectrum correction to optimize the performance of the noise insertion method for DBT exams. The results showed that, when compared with reference images, the simulated images achieved less than 1% error for mean and standard deviation values and close to 5% error for power spectrum analysis, improving in up to 64% when compared with non-optimized for DBT simulation methods.
|
15 |
Dose savings in digital breast tomosynthesis through image processing / Redução da dose de radiação em tomossíntese mamária através de processamento de imagensBorges, Lucas Rodrigues 14 June 2017 (has links)
In x-ray imaging, the x-ray radiation must be the minimum necessary to achieve the required diagnostic objective, to ensure the patients safety. However, low-dose acquisitions yield images with low quality, which affect the radiologists image interpretation. Therefore, there is a compromise between image quality and radiation dose. This work proposes an image restoration framework capable of restoring low-dose acquisitions to achieve the quality of full-dose acquisitions. The contribution of the new method includes the capability of restoring images with quantum and electronic noise, pixel offset and variable detector gain. To validate the image processing chain, a simulation algorithm was proposed. The simulation generates low-dose DBT projections, starting from fulldose images. To investigate the feasibility of reducing the radiation dose in breast cancer screening programs, a simulated pre-clinical trial was conducted using the simulation and the image processing pipeline proposed in this work. Digital breast tomosynthesis (DBT) images from 72 patients were selected, and 5 human observers were invited for the experiment. The results suggested that a reduction of up to 30% in radiation dose could not be perceived by the human reader after the proposed image processing pipeline was applied. Thus, the image processing algorithm has the potential to decrease radiation levels in DBT, also decreasing the cancer induction risks associated with the exam. / Em programas de rastreamento de câncer de mama, a dose de radiação deve ser mantida o mínimo necessário para se alcançar o diagnóstico, para garantir a segurança dos pacientes. Entretanto, imagens adquiridas com dose de radiação reduzida possuem qualidade inferior. Assim, existe um equilíbrio entre a dose de radiação e a qualidade da imagem. Este trabalho propõe um algoritmo de restauração de imagens capaz de recuperar a qualidade das imagens de tomossíntese digital mamária, adquiridas com doses reduzidas de radiação, para alcançar a qualidade de imagens adquiridas com a dose de referência. As contribuições do trabalho incluem a melhoria do modelo de ruído, e a inclusão das características do detector, como o ganho variável do ruído quântico. Para a validação a cadeia de processamento, um método de simulação de redução de dose de radiação foi proposto. Para investigar a possibilidade de redução de dose de radiação utilizada na tomossíntese, um estudo pré-clínico foi conduzido utilizando o método de simulação proposto e a cadeia de processamento. Imagens clínicas de tomossíntese mamária de 72 pacientes foram selecionadas e cinco observadores foram convidados para participar do estudo. Os resultados sugeriram que, após a utilização do processamento proposto, uma redução de 30% de dose de radiação pôde ser alcançada sem que os observadores percebessem diferença nos níveis de ruído e borramento. Assim, o algoritmo de processamento tem o potencial de reduzir os níveis de radiação na tomossíntese mamária, reduzindo também os riscos de indução do câncer de mama.
|
16 |
Correção do espectro de potência do ruído na simulação de redução da dose de radiação em imagens de tomossíntese digital mamária / Noise power spectrum correction for radiation dose reduction simulation in digital breast tomosynthesisIgor Guerrero 21 February 2018 (has links)
Esse trabalho apresenta uma nova metodologia para a correção do espectro de potência do ruído no processo de simulação de aquisições de imagens de tomossíntese digital mamária (Digital Breast Tomosynthesis - DBT) com doses reduzidas de radiação. A simulação é realizada por meio da inserção de ruído quântico dependente do sinal em imagens previamente adquiridas com a dose padrão de radiação. A DBT utiliza a mesma tecnologia de raios X que a mamografia digital, porém com a capacidade de prover ao médico exames do volume tridimensional da mama, minimizando o problema de superposição de tecidos. Apesar de ser o sucessor da mamografia, estudos têm mostrado que a otimização da relação entre a dose de radiação e a qualidade da imagem adquirida ainda não está bem estabelecida na DBT. Devido à impossibilidade de realizar diversas exposições de radiação a uma mesma paciente para os estudos de otimização da dose de radiação, é desejável que exista um método capaz de simular com exatidão diversas exposições tendo como base uma imagem clínica de referência. Embora existam diversos métodos para a simulação da redução de dose em exames mamográficos, o mesmo não pode ser dito quanto a imagens de DBT. O método desenvolvido para simulação da redução da dose de radiação em imagens de DBT se baseia em uma abordagem de inserção de ruído por meio de uma transformada de estabilização de variância, que já foi utilizada para simulação da redução de dose em exames de mamografia digital. Porém, esse trabalho propõe a inclusão da correção do espectro de potência do ruído para otimizar o desempenho do método de inserção de ruído para exames de DBT. Os resultados obtidos mostraram que, quando comparando a imagens de referência, a as imagens simuladas apresentaram erro menores que 1% para a análise do valor médio e desvio padrão e erro próximo de 5% para a análise do espectro de potência, apresentado resultados até 64% melhores que métodos não otimizados para DBT. / This work presents a new methodology for noise power spectrum correction in the simulation of digital breast tomosynthesis (DBT) images with reduced dose of radiation. The simulation is performed by inserting a signal-dependent quantum noise into previously acquired images with the standard dose of radiation. Using the same X-ray technology as a standard mammography, the DBT is capable of reconstructing the inner tissues of the patients\' breasts as a three-dimensional volume, providing more resources for cancer detection than its bi-dimensional counterpart and minimizing tissue overlapping. Despite being the successor to mammography, studies have shown that the optimization of the relationship between radiation dose and image quality is not well established in DBT yet. Due to the impossibility of exposing the same patient to multiple exams with different doses each, a simulation method able to mimic clinical images with high reliability is desirable. Despite the number of methods proposed for dose reduction simulation in mammography, scarcely any may be used in DBT. The method developed for simulation of radiation dose reduction in DBT images is based on a noise insertion approach using a variance-stabilizing transformation, which has already been used to simulate dose reduction in digital mammography exams. However, this work proposes the inclusion of the noise power spectrum correction to optimize the performance of the noise insertion method for DBT exams. The results showed that, when compared with reference images, the simulated images achieved less than 1% error for mean and standard deviation values and close to 5% error for power spectrum analysis, improving in up to 64% when compared with non-optimized for DBT simulation methods.
|
17 |
Dose savings in digital breast tomosynthesis through image processing / Redução da dose de radiação em tomossíntese mamária através de processamento de imagensLucas Rodrigues Borges 14 June 2017 (has links)
In x-ray imaging, the x-ray radiation must be the minimum necessary to achieve the required diagnostic objective, to ensure the patients safety. However, low-dose acquisitions yield images with low quality, which affect the radiologists image interpretation. Therefore, there is a compromise between image quality and radiation dose. This work proposes an image restoration framework capable of restoring low-dose acquisitions to achieve the quality of full-dose acquisitions. The contribution of the new method includes the capability of restoring images with quantum and electronic noise, pixel offset and variable detector gain. To validate the image processing chain, a simulation algorithm was proposed. The simulation generates low-dose DBT projections, starting from fulldose images. To investigate the feasibility of reducing the radiation dose in breast cancer screening programs, a simulated pre-clinical trial was conducted using the simulation and the image processing pipeline proposed in this work. Digital breast tomosynthesis (DBT) images from 72 patients were selected, and 5 human observers were invited for the experiment. The results suggested that a reduction of up to 30% in radiation dose could not be perceived by the human reader after the proposed image processing pipeline was applied. Thus, the image processing algorithm has the potential to decrease radiation levels in DBT, also decreasing the cancer induction risks associated with the exam. / Em programas de rastreamento de câncer de mama, a dose de radiação deve ser mantida o mínimo necessário para se alcançar o diagnóstico, para garantir a segurança dos pacientes. Entretanto, imagens adquiridas com dose de radiação reduzida possuem qualidade inferior. Assim, existe um equilíbrio entre a dose de radiação e a qualidade da imagem. Este trabalho propõe um algoritmo de restauração de imagens capaz de recuperar a qualidade das imagens de tomossíntese digital mamária, adquiridas com doses reduzidas de radiação, para alcançar a qualidade de imagens adquiridas com a dose de referência. As contribuições do trabalho incluem a melhoria do modelo de ruído, e a inclusão das características do detector, como o ganho variável do ruído quântico. Para a validação a cadeia de processamento, um método de simulação de redução de dose de radiação foi proposto. Para investigar a possibilidade de redução de dose de radiação utilizada na tomossíntese, um estudo pré-clínico foi conduzido utilizando o método de simulação proposto e a cadeia de processamento. Imagens clínicas de tomossíntese mamária de 72 pacientes foram selecionadas e cinco observadores foram convidados para participar do estudo. Os resultados sugeriram que, após a utilização do processamento proposto, uma redução de 30% de dose de radiação pôde ser alcançada sem que os observadores percebessem diferença nos níveis de ruído e borramento. Assim, o algoritmo de processamento tem o potencial de reduzir os níveis de radiação na tomossíntese mamária, reduzindo também os riscos de indução do câncer de mama.
|
Page generated in 0.0486 seconds